Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,0,1,1,-1,1,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1676'] |
Arrow polynomial of the knot is: 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.218', '6.554', '6.929', '6.932', '6.1014', '6.1024', '6.1068', '6.1526', '6.1664', '6.1676', '6.1755', '6.1763', '6.2065', '6.2078'] |
Outer characteristic polynomial of the knot is: t^7+31t^5+95t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1676'] |
2-strand cable arrow polynomial of the knot is: -704*K1**4*K2**2 + 1760*K1**4*K2 - 3456*K1**4 + 800*K1**3*K2*K3 - 512*K1**3*K3 - 896*K1**2*K2**4 + 4288*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 12144*K1**2*K2**2 - 800*K1**2*K2*K4 + 11576*K1**2*K2 - 352*K1**2*K3**2 - 5396*K1**2 + 1632*K1*K2**3*K3 - 3072*K1*K2**2*K3 - 384*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 9168*K1*K2*K3 + 848*K1*K3*K4 + 128*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 3488*K2**4 - 64*K2**3*K6 - 800*K2**2*K3**2 - 128*K2**2*K4**2 + 3008*K2**2*K4 - 3548*K2**2 + 568*K2*K3*K5 + 48*K2*K4*K6 - 1908*K3**2 - 596*K4**2 - 120*K5**2 - 4*K6**2 + 4642 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1676'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4684', 'vk6.4985', 'vk6.6160', 'vk6.6635', 'vk6.8161', 'vk6.8579', 'vk6.9551', 'vk6.9892', 'vk6.20693', 'vk6.22131', 'vk6.28214', 'vk6.29637', 'vk6.39670', 'vk6.41909', 'vk6.46254', 'vk6.47859', 'vk6.48716', 'vk6.48929', 'vk6.49494', 'vk6.49705', 'vk6.50742', 'vk6.50949', 'vk6.51221', 'vk6.51416', 'vk6.57628', 'vk6.58784', 'vk6.62308', 'vk6.63239', 'vk6.67098', 'vk6.67960', 'vk6.69698', 'vk6.70379'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U5U6U1O5O6U4U3 |
R3 orbit | {'O1O2O3U2O4U5U6U1O5O6U4U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4O5O6U3U5U6O4U2 |
Gauss code of K* | O1O2O3U1U2O4O5U3U6U5O6U4 |
Gauss code of -K* | O1O2O3U4O5U6U5U1O6O4U2U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 0 -1 2 1 -2 0],[ 0 0 0 1 -1 0 1],[ 1 0 0 1 0 1 1],[-2 -1 -1 0 0 -3 -1],[-1 1 0 0 0 -2 0],[ 2 0 -1 3 2 0 1],[ 0 -1 -1 1 0 -1 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -1 -1 -3],[-1 0 0 1 0 0 -2],[ 0 1 -1 0 1 0 0],[ 0 1 0 -1 0 -1 -1],[ 1 1 0 0 1 0 1],[ 2 3 2 0 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,0,1,1,1,3,-1,0,0,2,-1,0,0,1,1,-1] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,0,1,1,-1,1,0,1,0] |
Phi of -K | [-2,-1,0,0,1,2,2,1,2,1,1,0,1,2,2,1,1,1,2,1,1] |
Phi of K* | [-2,-1,0,0,1,2,1,1,1,2,1,1,2,2,1,-1,0,1,1,2,2] |
Phi of -K* | [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,0,1,1,-1,1,0,1,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+26w^2z+33w |
Inner characteristic polynomial | t^6+21t^4+57t^2+1 |
Outer characteristic polynomial | t^7+31t^5+95t^3+7t |
Flat arrow polynomial | 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial | -704*K1**4*K2**2 + 1760*K1**4*K2 - 3456*K1**4 + 800*K1**3*K2*K3 - 512*K1**3*K3 - 896*K1**2*K2**4 + 4288*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 12144*K1**2*K2**2 - 800*K1**2*K2*K4 + 11576*K1**2*K2 - 352*K1**2*K3**2 - 5396*K1**2 + 1632*K1*K2**3*K3 - 3072*K1*K2**2*K3 - 384*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 9168*K1*K2*K3 + 848*K1*K3*K4 + 128*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 3488*K2**4 - 64*K2**3*K6 - 800*K2**2*K3**2 - 128*K2**2*K4**2 + 3008*K2**2*K4 - 3548*K2**2 + 568*K2*K3*K5 + 48*K2*K4*K6 - 1908*K3**2 - 596*K4**2 - 120*K5**2 - 4*K6**2 + 4642 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}]] |
If K is slice | False |