Gauss code |
O1O2O3U2O4U5U4U6O5O6U1U3 |
R3 orbit |
{'O1O2O3U2O4U5U4U6O5O6U1U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U3O4O5U4U6U5O6U2 |
Gauss code of K* |
O1O2O3U1U3O4O5U4U6U5O6U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 2 1 -2 1],[ 1 0 0 2 1 -1 2],[ 1 0 0 1 0 1 1],[-2 -2 -1 0 1 -4 -1],[-1 -1 0 -1 0 -1 0],[ 2 1 -1 4 1 0 2],[-1 -2 -1 1 0 -2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 1 -1 -1 -2 -4],[-1 -1 0 0 0 -1 -1],[-1 1 0 0 -1 -2 -2],[ 1 1 0 1 0 0 1],[ 1 2 1 2 0 0 -1],[ 2 4 1 2 -1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,-1,1,1,2,4,0,0,1,1,1,2,2,0,-1,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,1,2,4,0,0,1,1,1,2,2,0,-1,1] |
Phi of -K |
[-2,-1,-1,1,1,2,0,2,1,2,0,0,0,1,1,1,2,2,0,0,2] |
Phi of K* |
[-2,-1,-1,1,1,2,0,2,1,2,0,0,0,1,1,1,2,2,0,0,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,1,1,2,4,0,0,1,1,1,2,2,0,-1,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^6+36t^4+68t^2+4 |
Outer characteristic polynomial |
t^7+48t^5+94t^3+8t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 8*K1*K2 - 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
-1152*K1**4*K2**2 + 6656*K1**4*K2 - 9664*K1**4 - 768*K1**3*K2**2*K3 + 3072*K1**3*K2*K3 - 1664*K1**3*K3 - 256*K1**2*K2**4 + 3264*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 512*K1**2*K2**2*K4 - 15008*K1**2*K2**2 + 768*K1**2*K2*K3**2 - 1216*K1**2*K2*K4 + 12192*K1**2*K2 - 2112*K1**2*K3**2 - 64*K1**2*K4**2 - 1168*K1**2 + 1344*K1*K2**3*K3 - 3456*K1*K2**2*K3 - 448*K1*K2**2*K5 + 256*K1*K2*K3**3 - 576*K1*K2*K3*K4 + 10496*K1*K2*K3 + 1632*K1*K3*K4 + 64*K1*K4*K5 - 64*K2**6 + 128*K2**4*K4 - 2160*K2**4 - 64*K2**3*K6 - 1440*K2**2*K3**2 - 32*K2**2*K4**2 + 2112*K2**2*K4 - 3132*K2**2 - 64*K2*K3**2*K4 + 720*K2*K3*K5 + 32*K2*K4*K6 - 128*K3**4 + 48*K3**2*K6 - 1672*K3**2 - 396*K4**2 - 40*K5**2 - 4*K6**2 + 3578 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
If K is slice |
True |