Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1674

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,0,1,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1674']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+22t^5+37t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1674']
2-strand cable arrow polynomial of the knot is: 3008*K1**4*K2 - 6464*K1**4 + 736*K1**3*K2*K3 - 1568*K1**3*K3 - 128*K1**2*K2**4 + 928*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7296*K1**2*K2**2 - 960*K1**2*K2*K4 + 10648*K1**2*K2 - 672*K1**2*K3**2 - 32*K1**2*K4**2 - 3876*K1**2 + 288*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 128*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7232*K1*K2*K3 + 1352*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 1160*K2**2*K4 - 4046*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 1856*K3**2 - 586*K4**2 - 68*K5**2 - 2*K6**2 + 4168
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1674']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4369', 'vk6.4402', 'vk6.5687', 'vk6.5720', 'vk6.7760', 'vk6.7793', 'vk6.9238', 'vk6.9271', 'vk6.10499', 'vk6.10553', 'vk6.10648', 'vk6.10716', 'vk6.10749', 'vk6.10839', 'vk6.14603', 'vk6.15300', 'vk6.15427', 'vk6.16222', 'vk6.17973', 'vk6.24415', 'vk6.30186', 'vk6.30240', 'vk6.30335', 'vk6.30466', 'vk6.33938', 'vk6.34339', 'vk6.34396', 'vk6.43850', 'vk6.50446', 'vk6.50479', 'vk6.54205', 'vk6.63442']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5U4U1O5O6U3U6
R3 orbit {'O1O2O3U2O4U5U4U1O5O6U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O4O5U3U6U5O6U2
Gauss code of K* O1O2O3U1U4O5O4U3U6U5O6U2
Gauss code of -K* O1O2O3U2O4U5U4U1O6O5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 -1 1 1 -2 1],[ 0 0 0 1 0 -1 1],[ 1 0 0 1 0 1 1],[-1 -1 -1 0 1 -2 1],[-1 0 0 -1 0 -1 0],[ 2 1 -1 2 1 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -1 -1 -2],[-1 -1 0 0 0 0 -1],[-1 -1 0 0 -1 -1 -1],[ 0 1 0 1 0 0 -1],[ 1 1 0 1 0 0 1],[ 2 2 1 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,1,1,2,0,0,0,1,1,1,1,0,1,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,0,1,1,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,2,1,1,2,2,1,1,1,2,0,0,1,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,2,1,0,1,1,1,2,2,1,1,2]
Phi of -K* [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,0,1,1,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+14t^4+20t^2+4
Outer characteristic polynomial t^7+22t^5+37t^3+8t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 3008*K1**4*K2 - 6464*K1**4 + 736*K1**3*K2*K3 - 1568*K1**3*K3 - 128*K1**2*K2**4 + 928*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7296*K1**2*K2**2 - 960*K1**2*K2*K4 + 10648*K1**2*K2 - 672*K1**2*K3**2 - 32*K1**2*K4**2 - 3876*K1**2 + 288*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 128*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7232*K1*K2*K3 + 1352*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 1160*K2**2*K4 - 4046*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 1856*K3**2 - 586*K4**2 - 68*K5**2 - 2*K6**2 + 4168
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact