Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,-1,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1672'] |
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866'] |
Outer characteristic polynomial of the knot is: t^7+20t^5+20t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1672'] |
2-strand cable arrow polynomial of the knot is: -320*K1**6 - 192*K1**4*K2**2 + 544*K1**4*K2 - 1552*K1**4 + 128*K1**3*K2*K3 - 1232*K1**2*K2**2 + 2096*K1**2*K2 - 496*K1**2*K3**2 - 112*K1**2*K4**2 - 512*K1**2 + 1592*K1*K2*K3 + 568*K1*K3*K4 + 88*K1*K4*K5 - 184*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 216*K2**2*K4 - 828*K2**2 + 120*K2*K3*K5 + 32*K2*K4*K6 - 524*K3**2 - 206*K4**2 - 36*K5**2 - 4*K6**2 + 1020 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1672'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11249', 'vk6.11329', 'vk6.12510', 'vk6.12623', 'vk6.13880', 'vk6.13975', 'vk6.14134', 'vk6.14359', 'vk6.14955', 'vk6.15076', 'vk6.15586', 'vk6.16058', 'vk6.17419', 'vk6.22588', 'vk6.22621', 'vk6.23931', 'vk6.24070', 'vk6.24164', 'vk6.26141', 'vk6.26558', 'vk6.30923', 'vk6.31048', 'vk6.33699', 'vk6.33774', 'vk6.34582', 'vk6.36231', 'vk6.37659', 'vk6.37706', 'vk6.42274', 'vk6.44802', 'vk6.52015', 'vk6.52108', 'vk6.54107', 'vk6.54415', 'vk6.54578', 'vk6.56497', 'vk6.56663', 'vk6.59048', 'vk6.60057', 'vk6.64571'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U5U3U1O5O6U4U6 |
R3 orbit | {'O1O2U1O3O4U5U2U3O5O6U4U6', 'O1O2O3U2O4U5U3U1O5O6U4U6'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3U4U5O4O6U3U1U6O5U2 |
Gauss code of K* | O1O2O3U1U4O5O4U3U6U2O6U5 |
Gauss code of -K* | O1O2O3U4O5U2U5U1O6O4U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 0 -1 1 1 -2 1],[ 0 0 -1 1 1 -1 1],[ 1 1 0 1 1 0 0],[-1 -1 -1 0 0 -1 1],[-1 -1 -1 0 0 -1 1],[ 2 1 0 1 1 0 1],[-1 -1 0 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 -1 0 -1],[-1 0 1 0 -1 -1 -1],[ 0 1 1 1 0 -1 -1],[ 1 1 0 1 1 0 0],[ 2 1 1 1 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,0,1,1,1,1,1,0,1,1,1,1,1,1,0] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,-1,-1,0] |
Phi of -K | [-2,-1,0,1,1,1,1,1,2,2,2,0,1,1,2,0,0,0,0,-1,-1] |
Phi of K* | [-1,-1,-1,0,1,2,-1,-1,0,2,2,0,0,1,2,0,1,2,0,1,1] |
Phi of -K* | [-2,-1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,-1,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 11z+23 |
Enhanced Jones-Krushkal polynomial | 11w^2z+23w |
Inner characteristic polynomial | t^6+12t^4+5t^2 |
Outer characteristic polynomial | t^7+20t^5+20t^3 |
Flat arrow polynomial | -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial | -320*K1**6 - 192*K1**4*K2**2 + 544*K1**4*K2 - 1552*K1**4 + 128*K1**3*K2*K3 - 1232*K1**2*K2**2 + 2096*K1**2*K2 - 496*K1**2*K3**2 - 112*K1**2*K4**2 - 512*K1**2 + 1592*K1*K2*K3 + 568*K1*K3*K4 + 88*K1*K4*K5 - 184*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 216*K2**2*K4 - 828*K2**2 + 120*K2*K3*K5 + 32*K2*K4*K6 - 524*K3**2 - 206*K4**2 - 36*K5**2 - 4*K6**2 + 1020 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}], [{6}, {5}, {4}, {2, 3}, {1}], [{6}, {5}, {4}, {3}, {1, 2}], [{6}, {5}, {4}, {3}, {2}, {1}]] |
If K is slice | False |