Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1671

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,-1,2,2,3,0,0,1,1,0,2,2,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1671']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+42t^5+85t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1671']
2-strand cable arrow polynomial of the knot is: -320*K1**4*K2**2 + 1376*K1**4*K2 - 3792*K1**4 + 1056*K1**3*K2*K3 + 32*K1**3*K3*K4 - 960*K1**3*K3 + 128*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4784*K1**2*K2**2 - 608*K1**2*K2*K4 + 9024*K1**2*K2 - 1072*K1**2*K3**2 - 128*K1**2*K4**2 - 5920*K1**2 - 864*K1*K2**2*K3 - 160*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 7928*K1*K2*K3 + 1968*K1*K3*K4 + 424*K1*K4*K5 - 384*K2**4 - 528*K2**2*K3**2 - 112*K2**2*K4**2 + 1344*K2**2*K4 - 5316*K2**2 - 96*K2*K3**2*K4 + 656*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2868*K3**2 - 1096*K4**2 - 260*K5**2 - 28*K6**2 + 5454
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1671']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4846', 'vk6.4859', 'vk6.5191', 'vk6.5202', 'vk6.6415', 'vk6.6432', 'vk6.6848', 'vk6.8384', 'vk6.8401', 'vk6.8809', 'vk6.8820', 'vk6.9745', 'vk6.9758', 'vk6.10044', 'vk6.20784', 'vk6.20792', 'vk6.22185', 'vk6.29747', 'vk6.39818', 'vk6.39838', 'vk6.46378', 'vk6.46397', 'vk6.47953', 'vk6.47973', 'vk6.49073', 'vk6.49084', 'vk6.49906', 'vk6.51328', 'vk6.51338', 'vk6.51547', 'vk6.58811', 'vk6.63275']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5U1U6O5O6U4U3
R3 orbit {'O1O2O3U2O4U5U1U6O5O6U4U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5O6U5U3U6O4U2
Gauss code of K* O1O2O3U1U3O4O5U2U6U5O6U4
Gauss code of -K* O1O2O3U4O5U6U5U2O6O4U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 1 -2 1],[ 1 0 0 2 0 1 2],[ 1 0 0 1 0 1 1],[-2 -2 -1 0 0 -3 -1],[-1 0 0 0 0 -2 0],[ 2 -1 -1 3 2 0 2],[-1 -2 -1 1 0 -2 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 -1 -2 -3],[-1 0 0 0 0 0 -2],[-1 1 0 0 -1 -2 -2],[ 1 1 0 1 0 0 1],[ 1 2 0 2 0 0 1],[ 2 3 2 2 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,0,1,1,2,3,0,0,0,2,1,2,2,0,-1,-1]
Phi over symmetry [-2,-1,-1,1,1,2,-1,-1,2,2,3,0,0,1,1,0,2,2,0,0,1]
Phi of -K [-2,-1,-1,1,1,2,2,2,1,1,1,0,0,2,1,1,2,2,0,0,1]
Phi of K* [-2,-1,-1,1,1,2,0,1,1,2,1,0,0,1,1,2,2,1,0,2,2]
Phi of -K* [-2,-1,-1,1,1,2,-1,-1,2,2,3,0,0,1,1,0,2,2,0,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+30t^4+47t^2
Outer characteristic polynomial t^7+42t^5+85t^3+3t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -320*K1**4*K2**2 + 1376*K1**4*K2 - 3792*K1**4 + 1056*K1**3*K2*K3 + 32*K1**3*K3*K4 - 960*K1**3*K3 + 128*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4784*K1**2*K2**2 - 608*K1**2*K2*K4 + 9024*K1**2*K2 - 1072*K1**2*K3**2 - 128*K1**2*K4**2 - 5920*K1**2 - 864*K1*K2**2*K3 - 160*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 7928*K1*K2*K3 + 1968*K1*K3*K4 + 424*K1*K4*K5 - 384*K2**4 - 528*K2**2*K3**2 - 112*K2**2*K4**2 + 1344*K2**2*K4 - 5316*K2**2 - 96*K2*K3**2*K4 + 656*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2868*K3**2 - 1096*K4**2 - 260*K5**2 - 28*K6**2 + 5454
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}]]
If K is slice False
Contact