Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1664

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,0,0,1,2,2,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1664', '7.15570', '7.37515']
Arrow polynomial of the knot is: 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.218', '6.554', '6.929', '6.932', '6.1014', '6.1024', '6.1068', '6.1526', '6.1664', '6.1676', '6.1755', '6.1763', '6.2065', '6.2078']
Outer characteristic polynomial of the knot is: t^7+48t^5+60t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1664', '7.37515']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 704*K1**4*K2**2 + 2784*K1**4*K2 - 6352*K1**4 + 1120*K1**3*K2*K3 - 1216*K1**3*K3 - 576*K1**2*K2**4 + 2976*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 11792*K1**2*K2**2 - 1216*K1**2*K2*K4 + 11560*K1**2*K2 - 848*K1**2*K3**2 - 32*K1**2*K3*K5 - 80*K1**2*K4**2 - 2488*K1**2 + 1120*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 1664*K1*K2**2*K3 - 384*K1*K2**2*K5 - 256*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8456*K1*K2*K3 - 32*K1*K2*K4*K5 + 1024*K1*K3*K4 + 152*K1*K4*K5 + 16*K1*K5*K6 - 64*K2**6 + 128*K2**4*K4 - 2720*K2**4 - 32*K2**3*K6 - 656*K2**2*K3**2 - 96*K2**2*K4**2 + 2096*K2**2*K4 - 2284*K2**2 + 432*K2*K3*K5 + 64*K2*K4*K6 - 1300*K3**2 - 408*K4**2 - 76*K5**2 - 12*K6**2 + 3326
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1664']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.499', 'vk6.591', 'vk6.626', 'vk6.996', 'vk6.1094', 'vk6.1131', 'vk6.1677', 'vk6.1849', 'vk6.2169', 'vk6.2189', 'vk6.2276', 'vk6.2318', 'vk6.2790', 'vk6.2889', 'vk6.3064', 'vk6.3199', 'vk6.5265', 'vk6.6520', 'vk6.8902', 'vk6.9817', 'vk6.20810', 'vk6.21052', 'vk6.22206', 'vk6.22476', 'vk6.28499', 'vk6.29769', 'vk6.39870', 'vk6.40287', 'vk6.46423', 'vk6.46912', 'vk6.49137', 'vk6.58833']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U5U6O5O6U4U3
R3 orbit {'O1O2O3U2O4U1U5U6O5O6U4U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5O6U5U6U3O4U2
Gauss code of K* O1O2O3U2U3O4O5U1U6U5O6U4
Gauss code of -K* O1O2O3U4O5U6U5U3O6O4U1U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 1 -1 1],[ 2 0 0 3 1 2 2],[ 1 0 0 1 0 1 1],[-2 -3 -1 0 0 -3 -1],[-1 -1 0 0 0 -2 0],[ 1 -2 -1 3 2 0 1],[-1 -2 -1 1 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 -1 -3 -3],[-1 0 0 0 0 -2 -1],[-1 1 0 0 -1 -1 -2],[ 1 1 0 1 0 1 0],[ 1 3 2 1 -1 0 -2],[ 2 3 1 2 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,0,1,1,3,3,0,0,2,1,1,1,2,-1,0,2]
Phi over symmetry [-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,0,0,1,2,2,0,0,1]
Phi of -K [-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,0,0,1,2,2,0,0,1]
Phi of K* [-2,-1,-1,1,1,2,0,1,0,2,1,0,1,1,1,0,2,2,-1,-1,1]
Phi of -K* [-2,-1,-1,1,1,2,0,2,1,2,3,1,0,1,1,2,1,3,0,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+24z+33
Enhanced Jones-Krushkal polynomial 4w^3z^2+24w^2z+33w
Inner characteristic polynomial t^6+36t^4+38t^2+1
Outer characteristic polynomial t^7+48t^5+60t^3+7t
Flat arrow polynomial 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7
2-strand cable arrow polynomial -256*K1**6 - 704*K1**4*K2**2 + 2784*K1**4*K2 - 6352*K1**4 + 1120*K1**3*K2*K3 - 1216*K1**3*K3 - 576*K1**2*K2**4 + 2976*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 11792*K1**2*K2**2 - 1216*K1**2*K2*K4 + 11560*K1**2*K2 - 848*K1**2*K3**2 - 32*K1**2*K3*K5 - 80*K1**2*K4**2 - 2488*K1**2 + 1120*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 1664*K1*K2**2*K3 - 384*K1*K2**2*K5 - 256*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8456*K1*K2*K3 - 32*K1*K2*K4*K5 + 1024*K1*K3*K4 + 152*K1*K4*K5 + 16*K1*K5*K6 - 64*K2**6 + 128*K2**4*K4 - 2720*K2**4 - 32*K2**3*K6 - 656*K2**2*K3**2 - 96*K2**2*K4**2 + 2096*K2**2*K4 - 2284*K2**2 + 432*K2*K3*K5 + 64*K2*K4*K6 - 1300*K3**2 - 408*K4**2 - 76*K5**2 - 12*K6**2 + 3326
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice True
Contact