Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1652

Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,-1,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1652']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+42t^5+38t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1652']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 192*K1**4*K2**2 + 1536*K1**4*K2 - 5456*K1**4 + 704*K1**3*K2*K3 - 1184*K1**3*K3 - 4848*K1**2*K2**2 - 800*K1**2*K2*K4 + 10536*K1**2*K2 - 1104*K1**2*K3**2 - 192*K1**2*K4**2 - 5492*K1**2 - 416*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 7560*K1*K2*K3 + 1872*K1*K3*K4 + 312*K1*K4*K5 - 416*K2**4 - 496*K2**2*K3**2 - 112*K2**2*K4**2 + 864*K2**2*K4 - 4884*K2**2 + 488*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2512*K3**2 - 816*K4**2 - 212*K5**2 - 52*K6**2 + 5278
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1652']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4246', 'vk6.4260', 'vk6.4327', 'vk6.4341', 'vk6.5519', 'vk6.5541', 'vk6.5640', 'vk6.5662', 'vk6.7717', 'vk6.7725', 'vk6.9115', 'vk6.9125', 'vk6.9196', 'vk6.9206', 'vk6.19828', 'vk6.19834', 'vk6.26267', 'vk6.26271', 'vk6.26710', 'vk6.26714', 'vk6.38221', 'vk6.38231', 'vk6.44998', 'vk6.45004', 'vk6.48556', 'vk6.48570', 'vk6.49261', 'vk6.49283', 'vk6.50409', 'vk6.50414', 'vk6.66359', 'vk6.66373']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U3U6O5O6U4U2
R3 orbit {'O1O2O3U1O4U5U3U6O5O6U4U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4O5O6U5U1U6O4U3
Gauss code of K* O1O2O3U1U3O4O5U6U5U2O6U4
Gauss code of -K* O1O2O3U4O5U2U6U5O6O4U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 1 -2 1],[ 2 0 2 1 1 1 2],[-1 -2 0 0 1 -3 0],[-1 -1 0 0 0 -1 0],[-1 -1 -1 0 0 -2 0],[ 2 -1 3 1 2 0 2],[-1 -2 0 0 0 -2 0]]
Primitive based matrix [[ 0 1 1 1 1 -2 -2],[-1 0 1 0 0 -2 -3],[-1 -1 0 0 0 -1 -2],[-1 0 0 0 0 -1 -1],[-1 0 0 0 0 -2 -2],[ 2 2 1 1 2 0 1],[ 2 3 2 1 2 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,-1,2,2,-1,0,0,2,3,0,0,1,2,0,1,1,2,2,-1]
Phi over symmetry [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,-1,0,0,0,0]
Phi of -K [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,-1,0,0,0,0]
Phi of K* [-1,-1,-1,-1,2,2,-1,0,0,1,2,0,0,0,1,0,1,1,2,2,-1]
Phi of -K* [-2,-2,1,1,1,1,-1,1,2,2,3,1,1,2,2,0,0,0,0,-1,0]
Symmetry type of based matrix c
u-polynomial 2t^2-4t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+30t^4+20t^2
Outer characteristic polynomial t^7+42t^5+38t^3+4t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -64*K1**6 - 192*K1**4*K2**2 + 1536*K1**4*K2 - 5456*K1**4 + 704*K1**3*K2*K3 - 1184*K1**3*K3 - 4848*K1**2*K2**2 - 800*K1**2*K2*K4 + 10536*K1**2*K2 - 1104*K1**2*K3**2 - 192*K1**2*K4**2 - 5492*K1**2 - 416*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 7560*K1*K2*K3 + 1872*K1*K3*K4 + 312*K1*K4*K5 - 416*K2**4 - 496*K2**2*K3**2 - 112*K2**2*K4**2 + 864*K2**2*K4 - 4884*K2**2 + 488*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2512*K3**2 - 816*K4**2 - 212*K5**2 - 52*K6**2 + 5278
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact