Gauss code |
O1O2O3U1O4U3U4U5O6O5U2U6 |
R3 orbit |
{'O1O2O3U1O4U3U4U5O6O5U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O5O4U5U6U1O6U3 |
Gauss code of K* |
O1O2O3U4U3O5O4U6U5U1O6U2 |
Gauss code of -K* |
O1O2O3U2O4U3U5U4O6O5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 1 1 0],[ 2 0 2 1 1 2 1],[ 0 -2 0 -1 1 0 0],[ 0 -1 1 0 1 0 0],[-1 -1 -1 -1 0 -1 0],[-1 -2 0 0 1 0 0],[ 0 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 0 -2],[-1 0 1 0 0 0 -2],[-1 -1 0 0 -1 -1 -1],[ 0 0 0 0 0 0 -1],[ 0 0 1 0 0 1 -1],[ 0 0 1 0 -1 0 -2],[ 2 2 1 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,0,2,-1,0,0,0,2,0,1,1,1,0,0,1,-1,1,2] |
Phi over symmetry |
[-2,0,0,0,1,1,0,1,1,1,2,0,1,1,0,0,1,1,1,0,-1] |
Phi of -K |
[-2,0,0,0,1,1,0,1,1,1,2,0,1,1,0,0,1,1,1,0,-1] |
Phi of K* |
[-1,-1,0,0,0,2,-1,0,0,1,2,1,1,1,1,-1,0,0,0,1,1] |
Phi of -K* |
[-2,0,0,0,1,1,1,1,2,1,2,0,0,0,0,1,1,0,1,0,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
17z+35 |
Enhanced Jones-Krushkal polynomial |
17w^2z+35w |
Inner characteristic polynomial |
t^6+15t^4+10t^2+1 |
Outer characteristic polynomial |
t^7+21t^5+27t^3+5t |
Flat arrow polynomial |
-14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 1056*K1**4*K2 - 3968*K1**4 + 288*K1**3*K2*K3 - 864*K1**3*K3 + 128*K1**2*K2**3 - 3152*K1**2*K2**2 - 224*K1**2*K2*K4 + 8216*K1**2*K2 - 352*K1**2*K3**2 - 4440*K1**2 - 384*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 4968*K1*K2*K3 + 632*K1*K3*K4 + 16*K1*K4*K5 - 312*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 616*K2**2*K4 - 3876*K2**2 + 208*K2*K3*K5 + 32*K2*K4*K6 - 1620*K3**2 - 330*K4**2 - 44*K5**2 - 4*K6**2 + 3920 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |