Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1645

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,0,0,1,1,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1645', '7.33029']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874']
Outer characteristic polynomial of the knot is: t^7+18t^5+36t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1234', '6.1645', '7.41328']
2-strand cable arrow polynomial of the knot is: -640*K1**4*K2**2 + 1536*K1**4*K2 - 2080*K1**4 + 256*K1**3*K2*K3 - 96*K1**3*K3 - 576*K1**2*K2**4 + 1856*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5056*K1**2*K2**2 - 224*K1**2*K2*K4 + 3896*K1**2*K2 - 160*K1**2*K3**2 - 940*K1**2 + 544*K1*K2**3*K3 - 928*K1*K2**2*K3 - 160*K1*K2**2*K5 + 2968*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1256*K2**4 - 32*K2**3*K6 - 272*K2**2*K3**2 - 16*K2**2*K4**2 + 840*K2**2*K4 - 694*K2**2 + 160*K2*K3*K5 + 16*K2*K4*K6 - 404*K3**2 - 94*K4**2 - 24*K5**2 - 2*K6**2 + 1204
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1645']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.40', 'vk6.81', 'vk6.178', 'vk6.241', 'vk6.281', 'vk6.658', 'vk6.667', 'vk6.777', 'vk6.1233', 'vk6.1324', 'vk6.1385', 'vk6.1427', 'vk6.1465', 'vk6.1596', 'vk6.1911', 'vk6.2077', 'vk6.2424', 'vk6.2493', 'vk6.2624', 'vk6.2972', 'vk6.3772', 'vk6.3965', 'vk6.7160', 'vk6.7337', 'vk6.14581', 'vk6.15803', 'vk6.16210', 'vk6.17765', 'vk6.24267', 'vk6.24911', 'vk6.25374', 'vk6.25933', 'vk6.29814', 'vk6.33404', 'vk6.33552', 'vk6.38012', 'vk6.38066', 'vk6.45037', 'vk6.53733', 'vk6.60760']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3U4U2O5O6U5U6
R3 orbit {'O1O2O3U1U2O4U3U4O5O6U5U6', 'O1O2O3U1O4U3U4U2O5O6U5U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5O4O5U2U6U1O6U3
Gauss code of K* O1O2O3U4U5O4O5U6U3U1O6U2
Gauss code of -K* O1O2O3U2O4U3U1U4O5O6U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 1 -1 1],[ 2 0 2 1 1 0 0],[-1 -2 0 -1 1 0 0],[ 0 -1 1 0 1 0 0],[-1 -1 -1 -1 0 0 0],[ 1 0 0 0 0 0 1],[-1 0 0 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 0 -2],[-1 -1 0 0 -1 0 -1],[-1 0 0 0 0 -1 0],[ 0 1 1 0 0 0 -1],[ 1 0 0 1 0 0 0],[ 2 2 1 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,0,2,0,1,0,1,0,1,0,0,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,0,0,1,1,0,0,-1]
Phi of -K [-2,-1,0,1,1,1,1,1,1,2,3,1,2,2,1,0,0,1,-1,0,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,2,2,0,0,2,1,1,1,3,1,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,0,0,1,1,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+10t^4+9t^2
Outer characteristic polynomial t^7+18t^5+36t^3+3t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -640*K1**4*K2**2 + 1536*K1**4*K2 - 2080*K1**4 + 256*K1**3*K2*K3 - 96*K1**3*K3 - 576*K1**2*K2**4 + 1856*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5056*K1**2*K2**2 - 224*K1**2*K2*K4 + 3896*K1**2*K2 - 160*K1**2*K3**2 - 940*K1**2 + 544*K1*K2**3*K3 - 928*K1*K2**2*K3 - 160*K1*K2**2*K5 + 2968*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1256*K2**4 - 32*K2**3*K6 - 272*K2**2*K3**2 - 16*K2**2*K4**2 + 840*K2**2*K4 - 694*K2**2 + 160*K2*K3*K5 + 16*K2*K4*K6 - 404*K3**2 - 94*K4**2 - 24*K5**2 - 2*K6**2 + 1204
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]]
If K is slice False
Contact