Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1640

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,1,0,0,1,1,1,1,2,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1640']
Arrow polynomial of the knot is: 8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.313', '6.623', '6.1031', '6.1201', '6.1327', '6.1378', '6.1640', '6.1697', '6.1797', '6.1833']
Outer characteristic polynomial of the knot is: t^7+32t^5+76t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1640']
2-strand cable arrow polynomial of the knot is: -448*K1**4*K2**2 + 800*K1**4*K2 - 768*K1**4 + 224*K1**3*K2*K3 - 160*K1**3*K3 - 1216*K1**2*K2**4 + 3072*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 9680*K1**2*K2**2 - 160*K1**2*K2*K4 + 7656*K1**2*K2 - 4112*K1**2 + 1440*K1*K2**3*K3 - 1376*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6136*K1*K2*K3 + 8*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 2152*K2**4 - 464*K2**2*K3**2 - 48*K2**2*K4**2 + 1120*K2**2*K4 - 1672*K2**2 + 48*K2*K3*K5 - 968*K3**2 - 62*K4**2 + 2748
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1640']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4722', 'vk6.5039', 'vk6.6247', 'vk6.6697', 'vk6.8219', 'vk6.8657', 'vk6.9599', 'vk6.9926', 'vk6.20297', 'vk6.21630', 'vk6.27593', 'vk6.29145', 'vk6.39011', 'vk6.41259', 'vk6.45779', 'vk6.47456', 'vk6.48762', 'vk6.48965', 'vk6.49563', 'vk6.49775', 'vk6.50772', 'vk6.50978', 'vk6.51251', 'vk6.51456', 'vk6.57148', 'vk6.58332', 'vk6.61774', 'vk6.62893', 'vk6.66769', 'vk6.67645', 'vk6.69417', 'vk6.70139']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U2U3U5O6O5U4U6
R3 orbit {'O1O2O3U1O4U2U3U5O6O5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6O4U6U1U2O5U3
Gauss code of K* O1O2O3U4U3O5O4U6U1U2O6U5
Gauss code of -K* O1O2O3U4O5U2U3U5O6O4U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 1 0],[ 2 0 1 2 2 2 0],[ 1 -1 0 1 2 1 1],[-1 -2 -1 0 1 -1 1],[-1 -2 -2 -1 0 -1 0],[-1 -2 -1 1 1 0 0],[ 0 0 -1 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 1 1 -1 -2],[-1 -1 -1 0 0 -2 -2],[ 0 0 -1 0 0 -1 0],[ 1 1 1 2 1 0 -1],[ 2 2 2 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,-1,1,2,0,2,2,1,0,1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,1,0,0,1,1,1,1,2,1,1,-1]
Phi of -K [-2,-1,0,1,1,1,0,2,1,1,1,0,0,1,1,1,1,2,1,1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,0,1,-1,2,1,1,1,1,1,0,2,0]
Phi of -K* [-2,-1,0,1,1,1,1,0,2,2,2,1,1,1,2,-1,0,0,-1,1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial 6w^3z^2-4w^3z+27w^2z+23w
Inner characteristic polynomial t^6+24t^4+35t^2+1
Outer characteristic polynomial t^7+32t^5+76t^3+13t
Flat arrow polynomial 8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2
2-strand cable arrow polynomial -448*K1**4*K2**2 + 800*K1**4*K2 - 768*K1**4 + 224*K1**3*K2*K3 - 160*K1**3*K3 - 1216*K1**2*K2**4 + 3072*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 9680*K1**2*K2**2 - 160*K1**2*K2*K4 + 7656*K1**2*K2 - 4112*K1**2 + 1440*K1*K2**3*K3 - 1376*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6136*K1*K2*K3 + 8*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 2152*K2**4 - 464*K2**2*K3**2 - 48*K2**2*K4**2 + 1120*K2**2*K4 - 1672*K2**2 + 48*K2*K3*K5 - 968*K3**2 - 62*K4**2 + 2748
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact