Gauss code |
O1O2O3O4O5U1O6U4U5U3U6U2 |
R3 orbit |
{'O1O2O3O4O5U1O6U4U5U3U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U6U3U1U2O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U5U3U1U2O6U4 |
Gauss code of -K* |
O1O2O3O4O5U2O6U4U5U3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 0 -1 1 3],[ 4 0 4 3 1 2 3],[-1 -4 0 -1 -2 0 3],[ 0 -3 1 0 -1 1 3],[ 1 -1 2 1 0 1 2],[-1 -2 0 -1 -1 0 1],[-3 -3 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 0 -1 -4],[-3 0 -1 -3 -3 -2 -3],[-1 1 0 0 -1 -1 -2],[-1 3 0 0 -1 -2 -4],[ 0 3 1 1 0 -1 -3],[ 1 2 1 2 1 0 -1],[ 4 3 2 4 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,0,1,4,1,3,3,2,3,0,1,1,2,1,2,4,1,3,1] |
Phi over symmetry |
[-4,-1,0,1,1,3,1,3,2,4,3,1,1,2,2,1,1,3,0,1,3] |
Phi of -K |
[-4,-1,0,1,1,3,2,1,1,3,4,0,0,1,2,0,0,0,0,-1,1] |
Phi of K* |
[-3,-1,-1,0,1,4,-1,1,0,2,4,0,0,0,1,0,1,3,0,1,2] |
Phi of -K* |
[-4,-1,0,1,1,3,1,3,2,4,3,1,1,2,2,1,1,3,0,1,3] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t |
Normalized Jones-Krushkal polynomial |
2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w |
Inner characteristic polynomial |
t^6+70t^4+17t^2 |
Outer characteristic polynomial |
t^7+98t^5+63t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 4*K1**2*K2 - 2*K1*K2 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-128*K1**6 + 256*K1**4*K2**3 - 640*K1**4*K2**2 + 1024*K1**4*K2 - 2576*K1**4 + 160*K1**3*K2*K3 - 256*K1**3*K3 + 128*K1**2*K2**5 - 2368*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3808*K1**2*K2**3 - 7904*K1**2*K2**2 - 256*K1**2*K2*K4 + 6984*K1**2*K2 - 144*K1**2*K3**2 - 2736*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2336*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 - 192*K1*K2**2*K5 + 4720*K1*K2*K3 + 232*K1*K3*K4 + 16*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 928*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 832*K2**4*K4 - 2592*K2**4 + 64*K2**3*K3*K5 - 576*K2**2*K3**2 - 136*K2**2*K4**2 + 1296*K2**2*K4 - 736*K2**2 + 136*K2*K3*K5 - 820*K3**2 - 172*K4**2 - 20*K5**2 + 2466 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |