Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1637

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,2,0,1,0,0,1,0,1,0,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.1637']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+23t^5+72t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1637']
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2 - 2528*K1**4 - 448*K1**3*K3 - 240*K1**2*K2**2 + 3880*K1**2*K2 - 1460*K1**2 + 1000*K1*K2*K3 + 24*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 1424*K2**2 - 356*K3**2 - 18*K4**2 + 1432
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1637']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4657', 'vk6.4946', 'vk6.6107', 'vk6.6596', 'vk6.8116', 'vk6.8520', 'vk6.9506', 'vk6.9863', 'vk6.20374', 'vk6.21717', 'vk6.27686', 'vk6.29232', 'vk6.39122', 'vk6.41378', 'vk6.45866', 'vk6.47529', 'vk6.48697', 'vk6.48902', 'vk6.49457', 'vk6.49678', 'vk6.50713', 'vk6.50914', 'vk6.51196', 'vk6.51399', 'vk6.57243', 'vk6.58470', 'vk6.61869', 'vk6.63006', 'vk6.66866', 'vk6.67736', 'vk6.69490', 'vk6.70214']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3U2O4U6U1O6U5
R3 orbit {'O1O2O3U4O5U3U2O4U6U1O6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4O5U3U5O6U2U1O4U6
Gauss code of K* O1O2U3O4O5U4O6U5U2U1O3U6
Gauss code of -K* O1O2U3O4O5U6O3U5U4U1O6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 0 0 -1 2 -1],[ 0 0 1 1 -2 1 0],[ 0 -1 0 0 -1 1 0],[ 0 -1 0 0 0 0 0],[ 1 2 1 0 0 2 0],[-2 -1 -1 0 -2 0 -2],[ 1 0 0 0 0 2 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -1 -2 -2],[ 0 0 0 0 -1 0 0],[ 0 1 0 0 -1 0 -1],[ 0 1 1 1 0 0 -2],[ 1 2 0 0 0 0 0],[ 1 2 0 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,1,2,2,0,1,0,0,1,0,1,0,2,0]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,2,2,0,1,0,0,1,0,1,0,2,0]
Phi of -K [-1,-1,0,0,0,2,0,-1,0,1,1,1,1,1,1,-1,-1,1,0,1,2]
Phi of K* [-2,0,0,0,1,1,1,1,2,1,1,-1,0,0,1,1,-1,1,1,1,0]
Phi of -K* [-1,-1,0,0,0,2,0,0,0,0,2,0,1,2,2,0,-1,0,-1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+17t^4+43t^2+4
Outer characteristic polynomial t^7+23t^5+72t^3+8t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 128*K1**4*K2 - 2528*K1**4 - 448*K1**3*K3 - 240*K1**2*K2**2 + 3880*K1**2*K2 - 1460*K1**2 + 1000*K1*K2*K3 + 24*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 1424*K2**2 - 356*K3**2 - 18*K4**2 + 1432
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact