Gauss code |
O1O2O3O4O5U1O6U4U3U6U5U2 |
R3 orbit |
{'O1O2O3O4O5U1O6U4U3U6U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U1U6U3U2O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U5U2U1U4O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U2U5U4U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 -1 -1 3 2],[ 4 0 4 2 1 3 2],[-1 -4 0 -2 -2 2 2],[ 1 -2 2 0 0 3 2],[ 1 -1 2 0 0 2 1],[-3 -3 -2 -3 -2 0 0],[-2 -2 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 3 2 1 -1 -1 -4],[-3 0 0 -2 -2 -3 -3],[-2 0 0 -2 -1 -2 -2],[-1 2 2 0 -2 -2 -4],[ 1 2 1 2 0 0 -1],[ 1 3 2 2 0 0 -2],[ 4 3 2 4 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,1,1,4,0,2,2,3,3,2,1,2,2,2,2,4,0,1,2] |
Phi over symmetry |
[-4,-1,-1,1,2,3,1,2,1,4,4,0,0,1,1,0,2,2,-1,0,1] |
Phi of -K |
[-4,-1,-1,1,2,3,1,2,1,4,4,0,0,1,1,0,2,2,-1,0,1] |
Phi of K* |
[-3,-2,-1,1,1,4,1,0,1,2,4,-1,1,2,4,0,0,1,0,1,2] |
Phi of -K* |
[-4,-1,-1,1,2,3,1,2,4,2,3,0,2,1,2,2,2,3,2,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
8z^2+25z+19 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+10w^3z^2-4w^3z+29w^2z+19w |
Inner characteristic polynomial |
t^6+68t^4+35t^2 |
Outer characteristic polynomial |
t^7+100t^5+84t^3+12t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + K2 + 2 |
2-strand cable arrow polynomial |
-192*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 1760*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 6352*K1**2*K2**2 + 128*K1**2*K2*K4**2 - 704*K1**2*K2*K4 + 6424*K1**2*K2 - 192*K1**2*K4**2 - 4888*K1**2 + 736*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1696*K1*K2**2*K3 - 416*K1*K2**2*K5 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6048*K1*K2*K3 - 32*K1*K2*K4*K5 + 968*K1*K3*K4 + 248*K1*K4*K5 - 32*K2**6 - 32*K2**4*K4**2 + 352*K2**4*K4 - 2256*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 464*K2**2*K3**2 - 408*K2**2*K4**2 + 2456*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 2952*K2**2 + 456*K2*K3*K5 + 160*K2*K4*K6 - 1560*K3**2 - 734*K4**2 - 112*K5**2 - 16*K6**2 + 3500 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |