Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,0,1,1,1,-1,0,0,0,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1624'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+20t^5+40t^3+11t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1624'] |
2-strand cable arrow polynomial of the knot is: -2064*K1**4 - 32*K1**3*K3 - 1728*K1**2*K2**2 - 32*K1**2*K2*K4 + 4440*K1**2*K2 - 656*K1**2*K3**2 - 2792*K1**2 + 3368*K1*K2*K3 + 792*K1*K3*K4 - 8*K2**4 + 48*K2**2*K4 - 2360*K2**2 - 1296*K3**2 - 246*K4**2 + 2564 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1624'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11223', 'vk6.11304', 'vk6.12486', 'vk6.12599', 'vk6.18227', 'vk6.18562', 'vk6.24696', 'vk6.25111', 'vk6.30891', 'vk6.31016', 'vk6.32075', 'vk6.32196', 'vk6.36815', 'vk6.37274', 'vk6.44058', 'vk6.44397', 'vk6.51983', 'vk6.52080', 'vk6.52864', 'vk6.52913', 'vk6.56032', 'vk6.56306', 'vk6.60582', 'vk6.60919', 'vk6.63635', 'vk6.63682', 'vk6.64065', 'vk6.64112', 'vk6.65691', 'vk6.65983', 'vk6.68739', 'vk6.68947'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4O5U2U5O6U1O4U6U3 |
R3 orbit | {'O1O2O3U4O5U2U5O6U1O4U6U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4O5U3O4U6U2O6U5 |
Gauss code of K* | O1O2U3O4U5O3O6U4U1U6O5U2 |
Gauss code of -K* | O1O2U3O4U2O5O6U5O3U1U6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -1 2 -1 1 0],[ 1 0 -1 2 0 1 0],[ 1 1 0 1 0 1 -1],[-2 -2 -1 0 -1 0 -1],[ 1 0 0 1 0 1 0],[-1 -1 -1 0 -1 0 0],[ 0 0 1 1 0 0 0]] |
Primitive based matrix | [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -1 -2],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 1 0 0],[ 1 1 1 -1 0 0 1],[ 1 1 1 0 0 0 0],[ 1 2 1 0 -1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,1,1,1,0,1,1,1,2,0,1,1,1,-1,0,0,0,-1,0] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,1,1,2,0,1,1,1,-1,0,0,0,-1,0] |
Phi of -K | [-1,-1,-1,0,1,2,-1,0,2,1,2,0,1,1,1,1,1,2,1,1,1] |
Phi of K* | [-2,-1,0,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,0,-1,0] |
Phi of -K* | [-1,-1,-1,0,1,2,-1,0,0,1,2,0,-1,1,1,0,1,1,0,1,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+25w^2z+35w |
Inner characteristic polynomial | t^6+12t^4+19t^2+4 |
Outer characteristic polynomial | t^7+20t^5+40t^3+11t |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | -2064*K1**4 - 32*K1**3*K3 - 1728*K1**2*K2**2 - 32*K1**2*K2*K4 + 4440*K1**2*K2 - 656*K1**2*K3**2 - 2792*K1**2 + 3368*K1*K2*K3 + 792*K1*K3*K4 - 8*K2**4 + 48*K2**2*K4 - 2360*K2**2 - 1296*K3**2 - 246*K4**2 + 2564 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |