Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1623

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,2,1,2,0,0,1,1,0,0,1,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1623']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+23t^5+39t^3+14t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1623']
2-strand cable arrow polynomial of the knot is: 768*K1**4*K2 - 2560*K1**4 + 128*K1**3*K2*K3 - 512*K1**3*K3 + 224*K1**2*K2**3 - 4608*K1**2*K2**2 - 192*K1**2*K2*K4 + 9296*K1**2*K2 - 128*K1**2*K3**2 - 6280*K1**2 - 544*K1*K2**2*K3 + 5600*K1*K2*K3 + 464*K1*K3*K4 - 448*K2**4 + 680*K2**2*K4 - 4512*K2**2 - 1656*K3**2 - 288*K4**2 + 4566
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1623']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16497', 'vk6.16590', 'vk6.18097', 'vk6.18433', 'vk6.22924', 'vk6.23021', 'vk6.24548', 'vk6.24965', 'vk6.34901', 'vk6.35006', 'vk6.36679', 'vk6.37101', 'vk6.42462', 'vk6.42575', 'vk6.43959', 'vk6.44274', 'vk6.54740', 'vk6.54837', 'vk6.55921', 'vk6.56213', 'vk6.59200', 'vk6.59265', 'vk6.60451', 'vk6.60812', 'vk6.64752', 'vk6.64811', 'vk6.65563', 'vk6.65873', 'vk6.68044', 'vk6.68109', 'vk6.68645', 'vk6.68858']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U1U5O6U2O4U6U3
R3 orbit {'O1O2O3U4O5U1U5O6U2O4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U2O4U6U3O6U5
Gauss code of K* O1O2U3O4U5O3O6U1U4U6O5U2
Gauss code of -K* O1O2U3O4U2O5O6U5O3U1U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 -1 1 0],[ 2 0 2 2 0 1 0],[ 0 -2 0 1 0 0 0],[-2 -2 -1 0 -1 0 -1],[ 1 0 0 1 0 1 0],[-1 -1 0 0 -1 0 0],[ 0 0 0 1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -1 -1 -2],[-1 0 0 0 0 -1 -1],[ 0 1 0 0 0 0 0],[ 0 1 0 0 0 0 -2],[ 1 1 1 0 0 0 0],[ 2 2 1 0 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,1,1,2,0,0,1,1,0,0,0,0,2,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,2,1,2,0,0,1,1,0,0,1,0,1,0]
Phi of -K [-2,-1,0,0,1,2,1,0,2,2,2,1,1,1,2,0,1,1,1,1,1]
Phi of K* [-2,-1,0,0,1,2,1,1,1,2,2,1,1,1,2,0,1,0,1,2,1]
Phi of -K* [-2,-1,0,0,1,2,0,0,2,1,2,0,0,1,1,0,0,1,0,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+13t^4+17t^2+4
Outer characteristic polynomial t^7+23t^5+39t^3+14t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial 768*K1**4*K2 - 2560*K1**4 + 128*K1**3*K2*K3 - 512*K1**3*K3 + 224*K1**2*K2**3 - 4608*K1**2*K2**2 - 192*K1**2*K2*K4 + 9296*K1**2*K2 - 128*K1**2*K3**2 - 6280*K1**2 - 544*K1*K2**2*K3 + 5600*K1*K2*K3 + 464*K1*K3*K4 - 448*K2**4 + 680*K2**2*K4 - 4512*K2**2 - 1656*K3**2 - 288*K4**2 + 4566
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice True
Contact