Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1620

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,2,0,2,-1,-1,1,-1,1,-1,1,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1620']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+33t^5+213t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1620']
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 288*K1**4 - 1024*K1**2*K2**2 + 2808*K1**2*K2 - 2216*K1**2 + 872*K1*K2*K3 - 120*K2**4 + 72*K2**2*K4 - 1224*K2**2 - 184*K3**2 - 6*K4**2 + 1276
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1620']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71462', 'vk6.71513', 'vk6.71525', 'vk6.71988', 'vk6.71998', 'vk6.72042', 'vk6.72051', 'vk6.73219', 'vk6.73230', 'vk6.73252', 'vk6.73261', 'vk6.73666', 'vk6.73669', 'vk6.75146', 'vk6.75164', 'vk6.77090', 'vk6.77137', 'vk6.77141', 'vk6.77432', 'vk6.77434', 'vk6.78077', 'vk6.78084', 'vk6.78112', 'vk6.78118', 'vk6.81296', 'vk6.81543', 'vk6.81551', 'vk6.85464', 'vk6.85479', 'vk6.86875', 'vk6.87737', 'vk6.89502']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3U6O4U1O6U2U5
R3 orbit {'O1O2O3U4O5U3U6O4U1O6U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O5U3O6U5U1O4U6
Gauss code of K* O1O2U3O4U2O5O6U4U5U1O3U6
Gauss code of -K* O1O2U3O4U5O3O6U1O5U6U2U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 -1 2 0],[ 1 0 0 1 0 1 2],[ 0 0 0 1 -2 1 1],[ 0 -1 -1 0 0 0 1],[ 1 0 2 0 0 3 0],[-2 -1 -1 0 -3 0 -2],[ 0 -2 -1 -1 0 2 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -2 -1 -3],[ 0 0 0 -1 1 -1 0],[ 0 1 1 0 1 0 -2],[ 0 2 -1 -1 0 -2 0],[ 1 1 1 0 2 0 0],[ 1 3 0 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,2,1,3,1,-1,1,0,-1,0,2,2,0,0]
Phi over symmetry [-2,0,0,0,1,1,0,1,2,0,2,-1,-1,1,-1,1,-1,1,1,0,0]
Phi of -K [-1,-1,0,0,0,2,0,-1,0,1,2,1,1,-1,0,1,1,0,1,2,1]
Phi of K* [-2,0,0,0,1,1,0,1,2,0,2,-1,-1,1,-1,1,-1,1,1,0,0]
Phi of -K* [-1,-1,0,0,0,2,0,0,0,2,3,1,2,0,1,1,-1,0,-1,2,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial 5w^3z^2+22w^2z+25w
Inner characteristic polynomial t^6+27t^4+160t^2+9
Outer characteristic polynomial t^7+33t^5+213t^3+13t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 32*K1**4*K2 - 288*K1**4 - 1024*K1**2*K2**2 + 2808*K1**2*K2 - 2216*K1**2 + 872*K1*K2*K3 - 120*K2**4 + 72*K2**2*K4 - 1224*K2**2 - 184*K3**2 - 6*K4**2 + 1276
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact