Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1612

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,2,3,0,0,0,2,1,2,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1612']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^7+34t^5+108t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1612']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 192*K1**4*K2**2 + 1376*K1**4*K2 - 6128*K1**4 + 352*K1**3*K2*K3 - 640*K1**3*K3 - 4800*K1**2*K2**2 - 96*K1**2*K2*K4 + 11272*K1**2*K2 - 176*K1**2*K3**2 - 4684*K1**2 - 320*K1*K2**2*K3 + 5240*K1*K2*K3 + 312*K1*K3*K4 - 168*K2**4 + 328*K2**2*K4 - 4496*K2**2 - 1452*K3**2 - 162*K4**2 + 4496
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1612']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4239', 'vk6.4259', 'vk6.4319', 'vk6.4338', 'vk6.5514', 'vk6.5536', 'vk6.5633', 'vk6.5655', 'vk6.7709', 'vk6.7728', 'vk6.9111', 'vk6.9128', 'vk6.9191', 'vk6.9207', 'vk6.19826', 'vk6.19837', 'vk6.26261', 'vk6.26274', 'vk6.26704', 'vk6.26719', 'vk6.38211', 'vk6.38224', 'vk6.44984', 'vk6.45001', 'vk6.48561', 'vk6.48569', 'vk6.49272', 'vk6.49278', 'vk6.50410', 'vk6.50417', 'vk6.66365', 'vk6.66368']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5U6O5U1O6U4U3
R3 orbit {'O1O2O3U2O4U5U6O5U1O6U4U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U3O6U5U6O4U2
Gauss code of K* O1O2U1O3U2O4O5U3U6U5O6U4
Gauss code of -K* O1O2U3O4U5O3O5U2O6U1U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 1 -1 0],[ 1 0 0 2 0 1 2],[ 1 0 0 1 0 1 1],[-2 -2 -1 0 0 -3 -1],[-1 0 0 0 0 -2 0],[ 1 -1 -1 3 2 0 0],[ 0 -2 -1 1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -2 -3],[-1 0 0 0 0 0 -2],[ 0 1 0 0 -1 -2 0],[ 1 1 0 1 0 0 1],[ 1 2 0 2 0 0 1],[ 1 3 2 0 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,1,2,3,0,0,0,2,1,2,0,0,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,2,3,0,0,0,2,1,2,0,0,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,0,-1,2,1,1,1,0,0,0,2,2,1,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,0,1,2,1,0,2,2,1,-1,0,-1,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,0,2,3,0,1,0,1,2,0,2,0,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+26t^4+75t^2
Outer characteristic polynomial t^7+34t^5+108t^3+4t
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -64*K1**6 - 192*K1**4*K2**2 + 1376*K1**4*K2 - 6128*K1**4 + 352*K1**3*K2*K3 - 640*K1**3*K3 - 4800*K1**2*K2**2 - 96*K1**2*K2*K4 + 11272*K1**2*K2 - 176*K1**2*K3**2 - 4684*K1**2 - 320*K1*K2**2*K3 + 5240*K1*K2*K3 + 312*K1*K3*K4 - 168*K2**4 + 328*K2**2*K4 - 4496*K2**2 - 1452*K3**2 - 162*K4**2 + 4496
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact