Gauss code |
O1O2O3U2O4U1U5O6U3O5U4U6 |
R3 orbit |
{'O1O2O3U2O4U1U5O6U3O5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O6U1O4U6U3O5U2 |
Gauss code of K* |
O1O2U3O4U2O5O3U1U6U4O6U5 |
Gauss code of -K* |
O1O2U3O4U1O3O5U2O6U4U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 1 0 1],[ 2 0 0 2 2 1 2],[ 1 0 0 1 1 0 1],[-1 -2 -1 0 0 -1 1],[-1 -2 -1 0 0 -1 0],[ 0 -1 0 1 1 0 1],[-1 -2 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 -1 -1 -2],[-1 0 0 0 -1 -1 -2],[ 0 1 1 1 0 0 -1],[ 1 1 1 1 0 0 0],[ 2 2 2 2 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,1,2,1,1,2,0,1,0] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,1,1,1,-1,0,0] |
Phi of -K |
[-2,-1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,-1,0,0] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,0,0,1,1,0,0,1,1,0,1,1,1,1,1] |
Phi of -K* |
[-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,1,1,1,-1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
Inner characteristic polynomial |
t^6+20t^4+10t^2+1 |
Outer characteristic polynomial |
t^7+28t^5+23t^3+4t |
Flat arrow polynomial |
-14*K1**2 + 7*K2 + 8 |
2-strand cable arrow polynomial |
-448*K1**6 - 320*K1**4*K2**2 + 1632*K1**4*K2 - 6416*K1**4 + 768*K1**3*K2*K3 - 992*K1**3*K3 - 6432*K1**2*K2**2 - 416*K1**2*K2*K4 + 13248*K1**2*K2 - 496*K1**2*K3**2 - 5788*K1**2 - 224*K1*K2**2*K3 + 7232*K1*K2*K3 + 568*K1*K3*K4 - 344*K2**4 + 512*K2**2*K4 - 5272*K2**2 - 1916*K3**2 - 246*K4**2 + 5348 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]] |
If K is slice |
False |