Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1594

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,2,2,2,2,0,1,2,1,1,1,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1594']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+39t^5+160t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1594']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 608*K1**4*K2 - 720*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 + 2048*K1**2*K2**3 - 5872*K1**2*K2**2 - 800*K1**2*K2*K4 + 5216*K1**2*K2 - 80*K1**2*K3**2 - 3620*K1**2 + 672*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4632*K1*K2*K3 - 96*K1*K2*K4*K5 + 616*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 288*K2**6 + 544*K2**4*K4 - 2688*K2**4 - 160*K2**3*K6 - 704*K2**2*K3**2 - 336*K2**2*K4**2 + 2072*K2**2*K4 - 1542*K2**2 - 96*K2*K3**2*K4 + 336*K2*K3*K5 + 200*K2*K4*K6 - 1044*K3**2 - 520*K4**2 - 24*K5**2 - 10*K6**2 + 2726
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1594']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11457', 'vk6.11758', 'vk6.12776', 'vk6.13114', 'vk6.20669', 'vk6.22108', 'vk6.28168', 'vk6.29592', 'vk6.31213', 'vk6.31560', 'vk6.32389', 'vk6.32794', 'vk6.39615', 'vk6.41856', 'vk6.46227', 'vk6.47834', 'vk6.52219', 'vk6.52502', 'vk6.53060', 'vk6.53376', 'vk6.57601', 'vk6.58763', 'vk6.62257', 'vk6.63203', 'vk6.63784', 'vk6.63900', 'vk6.64217', 'vk6.64398', 'vk6.67061', 'vk6.67928', 'vk6.69680', 'vk6.70362']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6U3O6O4U1U2U5
R3 orbit {'O1O2O3U4O5U6U3O6O4U1U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U3O5O6U1U6O4U5
Gauss code of K* O1O2O3U1U2U4O5U3O6O4U6U5
Gauss code of -K* O1O2O3U4U5O6O5U1O4U6U2U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 2 -1],[ 2 0 1 2 1 2 1],[ 0 -1 0 2 -1 1 -1],[-1 -2 -2 0 0 -1 -1],[ 0 -1 1 0 0 2 -1],[-2 -2 -1 1 -2 0 -2],[ 1 -1 1 1 1 2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 1 -1 -2 -2 -2],[-1 -1 0 -2 0 -1 -2],[ 0 1 2 0 -1 -1 -1],[ 0 2 0 1 0 -1 -1],[ 1 2 1 1 1 0 -1],[ 2 2 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,-1,1,2,2,2,2,0,1,2,1,1,1,1,1,1]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,2,2,2,2,0,1,2,1,1,1,1,1,1]
Phi of -K [-2,-1,0,0,1,2,0,1,1,1,2,0,0,1,1,-1,1,0,-1,1,2]
Phi of K* [-2,-1,0,0,1,2,2,0,1,1,2,1,-1,1,1,1,0,1,0,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,1,2,2,1,1,1,2,-1,2,1,0,2,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2-4w^3z+26w^2z+25w
Inner characteristic polynomial t^6+29t^4+100t^2+4
Outer characteristic polynomial t^7+39t^5+160t^3+16t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -384*K1**4*K2**2 + 608*K1**4*K2 - 720*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 + 2048*K1**2*K2**3 - 5872*K1**2*K2**2 - 800*K1**2*K2*K4 + 5216*K1**2*K2 - 80*K1**2*K3**2 - 3620*K1**2 + 672*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4632*K1*K2*K3 - 96*K1*K2*K4*K5 + 616*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 288*K2**6 + 544*K2**4*K4 - 2688*K2**4 - 160*K2**3*K6 - 704*K2**2*K3**2 - 336*K2**2*K4**2 + 2072*K2**2*K4 - 1542*K2**2 - 96*K2*K3**2*K4 + 336*K2*K3*K5 + 200*K2*K4*K6 - 1044*K3**2 - 520*K4**2 - 24*K5**2 - 10*K6**2 + 2726
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{6}, {3, 5}, {1, 4}, {2}]]
If K is slice False
Contact