Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1590

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,1,2,1,1,1,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1590']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+30t^5+56t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1590']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 384*K1**4*K2**2 + 1152*K1**4*K2 - 2944*K1**4 + 224*K1**3*K2*K3 - 128*K1**3*K3 + 992*K1**2*K2**3 - 5392*K1**2*K2**2 - 96*K1**2*K2*K4 + 6016*K1**2*K2 - 1540*K1**2 - 608*K1*K2**2*K3 + 3232*K1*K2*K3 + 24*K1*K3*K4 - 760*K2**4 + 512*K2**2*K4 - 1440*K2**2 - 420*K3**2 - 30*K4**2 + 1716
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1590']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19935', 'vk6.19979', 'vk6.21173', 'vk6.21248', 'vk6.26890', 'vk6.26998', 'vk6.28646', 'vk6.28724', 'vk6.38311', 'vk6.38408', 'vk6.40444', 'vk6.40591', 'vk6.45183', 'vk6.45298', 'vk6.47015', 'vk6.47080', 'vk6.56728', 'vk6.56785', 'vk6.57828', 'vk6.57919', 'vk6.61151', 'vk6.61277', 'vk6.62394', 'vk6.62470', 'vk6.66421', 'vk6.66485', 'vk6.67191', 'vk6.67278', 'vk6.69075', 'vk6.69143', 'vk6.69859', 'vk6.69902']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6U1O6O4U2U3U5
R3 orbit {'O1O2O3U4O5U6U1O6O4U2U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U2O5O6U3U6O4U5
Gauss code of K* O1O2O3U4U1U2O5U3O6O4U6U5
Gauss code of -K* O1O2O3U4U5O6O5U1O4U2U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 2 -1],[ 1 0 -1 0 2 1 1],[ 1 1 0 1 1 1 1],[-1 0 -1 0 -1 0 -1],[ 0 -2 -1 1 0 2 -1],[-2 -1 -1 0 -2 0 -2],[ 1 -1 -1 1 1 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -2 -1 -1 -2],[-1 0 0 -1 0 -1 -1],[ 0 2 1 0 -2 -1 -1],[ 1 1 0 2 0 -1 1],[ 1 1 1 1 1 0 1],[ 1 2 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,1,2,1,1,1,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,1,2,1,1,1,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,-1,2,2,0,1,1,0,0,1]
Phi of K* [-2,-1,0,1,1,1,1,0,1,2,2,0,1,1,2,0,0,-1,-1,-1,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,2,0,1,1,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+22t^4+35t^2
Outer characteristic polynomial t^7+30t^5+56t^3+4t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -128*K1**6 - 384*K1**4*K2**2 + 1152*K1**4*K2 - 2944*K1**4 + 224*K1**3*K2*K3 - 128*K1**3*K3 + 992*K1**2*K2**3 - 5392*K1**2*K2**2 - 96*K1**2*K2*K4 + 6016*K1**2*K2 - 1540*K1**2 - 608*K1*K2**2*K3 + 3232*K1*K2*K3 + 24*K1*K3*K4 - 760*K2**4 + 512*K2**2*K4 - 1440*K2**2 - 420*K3**2 - 30*K4**2 + 1716
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact