Gauss code |
O1O2O3U4O5U1U3O6O4U2U5U6 |
R3 orbit |
{'O1O2O3U4O5U1U3O6O4U2U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5U2O6O4U1U3O5U6 |
Gauss code of K* |
O1O2O3U4U1U5O6U2O4O5U3U6 |
Gauss code of -K* |
O1O2O3U4U1O5O6U2O4U5U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 0 1 1],[ 2 0 1 1 1 2 1],[ 1 -1 0 1 0 1 1],[-1 -1 -1 0 -1 0 0],[ 0 -1 0 1 0 1 0],[-1 -2 -1 0 -1 0 1],[-1 -1 -1 0 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 -1 -1 -1],[ 0 1 0 1 0 0 -1],[ 1 1 1 1 0 0 -1],[ 2 2 1 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,0,1,1,2,0,0,1,1,1,1,1,0,1,1] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,1,2,2,1,1,1,1,0,0,1,0,-1,0] |
Phi of -K |
[-2,-1,0,1,1,1,0,1,1,2,2,1,1,1,1,0,0,1,0,-1,0] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,0,1,1,2,0,0,1,1,0,1,2,1,1,0] |
Phi of -K* |
[-2,-1,0,1,1,1,1,1,1,1,2,0,1,1,1,0,1,1,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+14t^4+13t^2+1 |
Outer characteristic polynomial |
t^7+22t^5+26t^3+4t |
Flat arrow polynomial |
-6*K1**2 - 8*K1*K2 + 4*K1 + 3*K2 + 4*K3 + 4 |
2-strand cable arrow polynomial |
1792*K1**4*K2 - 3808*K1**4 + 864*K1**3*K2*K3 - 1792*K1**3*K3 + 288*K1**2*K2**2*K4 - 4112*K1**2*K2**2 - 992*K1**2*K2*K4 + 8544*K1**2*K2 - 1856*K1**2*K3**2 - 128*K1**2*K4**2 - 5644*K1**2 + 192*K1*K2**3*K3 - 864*K1*K2**2*K3 - 256*K1*K2**2*K5 - 608*K1*K2*K3*K4 + 7984*K1*K2*K3 + 2784*K1*K3*K4 + 360*K1*K4*K5 - 216*K2**4 - 288*K2**2*K3**2 - 128*K2**2*K4**2 + 1352*K2**2*K4 - 4920*K2**2 + 608*K2*K3*K5 + 128*K2*K4*K6 - 2844*K3**2 - 1190*K4**2 - 224*K5**2 - 32*K6**2 + 5004 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |