Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1547

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,2,1,1,2,1,0,1,1,0,0,1,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1547']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+24t^5+52t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1547']
2-strand cable arrow polynomial of the knot is: 832*K1**2*K2**3 - 3392*K1**2*K2**2 - 512*K1**2*K2*K4 + 3624*K1**2*K2 - 2952*K1**2 - 512*K1*K2**2*K3 + 3384*K1*K2*K3 + 392*K1*K3*K4 - 1176*K2**4 + 1104*K2**2*K4 - 1640*K2**2 - 864*K3**2 - 302*K4**2 + 2012
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1547']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16362', 'vk6.16403', 'vk6.18121', 'vk6.18455', 'vk6.22692', 'vk6.22791', 'vk6.24578', 'vk6.24991', 'vk6.34661', 'vk6.34746', 'vk6.36715', 'vk6.37134', 'vk6.42322', 'vk6.42367', 'vk6.43987', 'vk6.44298', 'vk6.54623', 'vk6.54648', 'vk6.55931', 'vk6.56225', 'vk6.59103', 'vk6.59163', 'vk6.60465', 'vk6.60826', 'vk6.64648', 'vk6.64694', 'vk6.65583', 'vk6.65892', 'vk6.68001', 'vk6.68025', 'vk6.68660', 'vk6.68871']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2U1O4O6U5U6U3
R3 orbit {'O1O2O3U4O5U2U1O4O6U5U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U5O4O6U3U2O5U6
Gauss code of K* O1O2O3U4U5U3O6U1O5O4U6U2
Gauss code of -K* O1O2O3U2U4O5O6U3O4U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 -1 0 1],[ 1 0 0 2 0 1 1],[ 1 0 0 1 1 0 1],[-2 -2 -1 0 -1 -2 1],[ 1 0 -1 1 0 0 0],[ 0 -1 0 2 0 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 1 -2 -1 -1 -2],[-1 -1 0 -1 0 -1 -1],[ 0 2 1 0 0 0 -1],[ 1 1 0 0 0 -1 0],[ 1 1 1 0 1 0 0],[ 1 2 1 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,-1,2,1,1,2,1,0,1,1,0,0,1,1,0,0]
Phi over symmetry [-2,-1,0,1,1,1,-1,2,1,1,2,1,0,1,1,0,0,1,1,0,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,2,2,0,1,1,0,0,2]
Phi of K* [-2,-1,0,1,1,1,2,0,1,2,2,0,1,1,2,0,1,1,0,0,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,0,1,0,0,1,1,1,1,2,1,2,-1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-6w^3z+25w^2z+15w
Inner characteristic polynomial t^6+16t^4+23t^2+4
Outer characteristic polynomial t^7+24t^5+52t^3+11t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 832*K1**2*K2**3 - 3392*K1**2*K2**2 - 512*K1**2*K2*K4 + 3624*K1**2*K2 - 2952*K1**2 - 512*K1*K2**2*K3 + 3384*K1*K2*K3 + 392*K1*K3*K4 - 1176*K2**4 + 1104*K2**2*K4 - 1640*K2**2 - 864*K3**2 - 302*K4**2 + 2012
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact