Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1543

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,2,0,2,1,0,1,1,1,0,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1543']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+39t^5+120t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1543']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 448*K1**4*K2 - 704*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 384*K1**2*K2**5 - 1344*K1**2*K2**4 + 3104*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 6064*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 1024*K1**2*K2*K4 + 5352*K1**2*K2 - 160*K1**2*K3**2 - 3628*K1**2 - 640*K1*K2**4*K3 + 1472*K1*K2**3*K3 + 544*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4384*K1*K2*K3 - 96*K1*K2*K4*K5 + 864*K1*K3*K4 - 288*K2**6 + 448*K2**4*K4 - 1776*K2**4 - 736*K2**2*K3**2 - 336*K2**2*K4**2 + 1288*K2**2*K4 - 1502*K2**2 - 96*K2*K3**2*K4 + 200*K2*K3*K5 + 120*K2*K4*K6 - 968*K3**2 - 488*K4**2 - 12*K5**2 - 2*K6**2 + 2534
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1543']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11453', 'vk6.11752', 'vk6.12768', 'vk6.13110', 'vk6.20673', 'vk6.22111', 'vk6.28176', 'vk6.29599', 'vk6.31211', 'vk6.31556', 'vk6.32385', 'vk6.32792', 'vk6.39624', 'vk6.41863', 'vk6.46232', 'vk6.47837', 'vk6.52209', 'vk6.52474', 'vk6.53040', 'vk6.53362', 'vk6.57610', 'vk6.58769', 'vk6.62274', 'vk6.63213', 'vk6.63778', 'vk6.63891', 'vk6.64206', 'vk6.64392', 'vk6.67072', 'vk6.67937', 'vk6.69686', 'vk6.70367']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U1U6O4O6U5U2U3
R3 orbit {'O1O2O3U4O5U1U6O4O6U5U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U2U4O5O6U5U3O4U6
Gauss code of K* O1O2O3U4U2U3O5U1O4O6U5U6
Gauss code of -K* O1O2O3U4U5O4O6U3O5U1U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 -1 0 1],[ 2 0 1 2 2 0 3],[ 0 -1 0 1 0 -1 1],[-2 -2 -1 0 -2 -1 -1],[ 1 -2 0 2 0 1 1],[ 0 0 1 1 -1 0 0],[-1 -3 -1 1 -1 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -1 -1 -3],[ 0 1 0 0 1 -1 0],[ 0 1 1 -1 0 0 -1],[ 1 2 1 1 0 0 -2],[ 2 2 3 0 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,1,2,2,0,1,1,3,-1,1,0,0,1,2]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,2,0,2,1,0,1,1,1,0,1,1,1,0]
Phi of -K [-2,-1,0,0,1,2,-1,1,2,0,2,1,0,1,1,1,0,1,1,1,0]
Phi of K* [-2,-1,0,0,1,2,0,1,1,1,2,0,1,1,0,-1,1,1,0,2,-1]
Phi of -K* [-2,-1,0,0,1,2,2,0,1,3,2,1,0,1,2,1,0,1,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w
Inner characteristic polynomial t^6+29t^4+76t^2+1
Outer characteristic polynomial t^7+39t^5+120t^3+9t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -256*K1**4*K2**2 + 448*K1**4*K2 - 704*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 384*K1**2*K2**5 - 1344*K1**2*K2**4 + 3104*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 6064*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 1024*K1**2*K2*K4 + 5352*K1**2*K2 - 160*K1**2*K3**2 - 3628*K1**2 - 640*K1*K2**4*K3 + 1472*K1*K2**3*K3 + 544*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4384*K1*K2*K3 - 96*K1*K2*K4*K5 + 864*K1*K3*K4 - 288*K2**6 + 448*K2**4*K4 - 1776*K2**4 - 736*K2**2*K3**2 - 336*K2**2*K4**2 + 1288*K2**2*K4 - 1502*K2**2 - 96*K2*K3**2*K4 + 200*K2*K3*K5 + 120*K2*K4*K6 - 968*K3**2 - 488*K4**2 - 12*K5**2 - 2*K6**2 + 2534
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact