Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.154

Min(phi) over symmetries of the knot is: [-4,-2,1,1,1,3,1,1,2,3,4,0,1,2,2,0,0,-1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.154']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+108t^5+74t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.154']
2-strand cable arrow polynomial of the knot is: 48*K1**2*K2 - 416*K1**2*K3**2 - 508*K1**2 + 1016*K1*K2*K3 + 488*K1*K3*K4 + 32*K1*K4*K5 + 8*K1*K5*K6 + 8*K1*K6*K7 - 432*K2**2*K3**2 - 8*K2**2*K4**2 + 112*K2**2*K4 - 8*K2**2*K6**2 - 498*K2**2 + 336*K2*K3*K5 + 16*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 496*K3**2 - 214*K4**2 - 84*K5**2 - 14*K6**2 - 8*K7**2 - 2*K8**2 + 606
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.154']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16931', 'vk6.17172', 'vk6.20225', 'vk6.21519', 'vk6.23327', 'vk6.23620', 'vk6.27427', 'vk6.29037', 'vk6.35365', 'vk6.35786', 'vk6.38840', 'vk6.41032', 'vk6.42842', 'vk6.43120', 'vk6.45601', 'vk6.47360', 'vk6.55085', 'vk6.55335', 'vk6.57058', 'vk6.58182', 'vk6.59480', 'vk6.59769', 'vk6.61575', 'vk6.62747', 'vk6.64927', 'vk6.65133', 'vk6.66676', 'vk6.67514', 'vk6.68222', 'vk6.68363', 'vk6.69329', 'vk6.70080', 'vk6.81989', 'vk6.82722', 'vk6.84832', 'vk6.86230', 'vk6.88490', 'vk6.88645', 'vk6.89652', 'vk6.89654']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1O6U3U5U4U6U2
R3 orbit {'O1O2O3O4O5U1O6U3U5U4U6U2', 'O1O2O3O4O5U1U2O6U5U4U3U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U4U6U2U1U3O6U5
Gauss code of K* O1O2O3O4O5U6U5U1U3U2O6U4
Gauss code of -K* O1O2O3O4O5U2O6U4U3U5U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 1 -2 1 1 3],[ 4 0 4 1 3 2 3],[-1 -4 0 -3 0 0 3],[ 2 -1 3 0 2 1 3],[-1 -3 0 -2 0 0 2],[-1 -2 0 -1 0 0 1],[-3 -3 -3 -3 -2 -1 0]]
Primitive based matrix [[ 0 3 1 1 1 -2 -4],[-3 0 -1 -2 -3 -3 -3],[-1 1 0 0 0 -1 -2],[-1 2 0 0 0 -2 -3],[-1 3 0 0 0 -3 -4],[ 2 3 1 2 3 0 -1],[ 4 3 2 3 4 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,-1,2,4,1,2,3,3,3,0,0,1,2,0,2,3,3,4,1]
Phi over symmetry [-4,-2,1,1,1,3,1,1,2,3,4,0,1,2,2,0,0,-1,0,0,1]
Phi of -K [-4,-2,1,1,1,3,1,1,2,3,4,0,1,2,2,0,0,-1,0,0,1]
Phi of K* [-3,-1,-1,-1,2,4,-1,0,1,2,4,0,0,0,1,0,1,2,2,3,1]
Phi of -K* [-4,-2,1,1,1,3,1,2,3,4,3,1,2,3,3,0,0,1,0,2,3]
Symmetry type of based matrix c
u-polynomial t^4-t^3+t^2-3t
Normalized Jones-Krushkal polynomial 3z+7
Enhanced Jones-Krushkal polynomial 4w^4z-8w^3z+7w^2z+7w
Inner characteristic polynomial t^6+76t^4+17t^2
Outer characteristic polynomial t^7+108t^5+74t^3
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial 48*K1**2*K2 - 416*K1**2*K3**2 - 508*K1**2 + 1016*K1*K2*K3 + 488*K1*K3*K4 + 32*K1*K4*K5 + 8*K1*K5*K6 + 8*K1*K6*K7 - 432*K2**2*K3**2 - 8*K2**2*K4**2 + 112*K2**2*K4 - 8*K2**2*K6**2 - 498*K2**2 + 336*K2*K3*K5 + 16*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 496*K3**2 - 214*K4**2 - 84*K5**2 - 14*K6**2 - 8*K7**2 - 2*K8**2 + 606
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact