Gauss code |
O1O2O3U2O4U5U1O6O5U6U4U3 |
R3 orbit |
{'O1O2O3U2O4U5U1O6O5U6U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U5O6O5U3U6O4U2 |
Gauss code of K* |
O1O2O3U4U5U3O5U2O6O4U1U6 |
Gauss code of -K* |
O1O2O3U4U3O5O4U2O6U1U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 2 1 0 -1],[ 1 0 0 2 0 1 -1],[ 1 0 0 1 0 1 0],[-2 -2 -1 0 0 -1 -1],[-1 0 0 0 0 0 -1],[ 0 -1 -1 1 0 0 -1],[ 1 1 0 1 1 1 0]] |
Primitive based matrix |
[[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -1 -2],[-1 0 0 0 0 -1 0],[ 0 1 0 0 -1 -1 -1],[ 1 1 0 1 0 0 0],[ 1 1 1 1 0 0 1],[ 1 2 0 1 0 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,0,1,1,1,0,0,-1] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,0,1,1,1,0,0,-1] |
Phi of -K |
[-1,-1,-1,0,1,2,-1,0,0,1,2,0,0,2,1,0,2,2,1,1,1] |
Phi of K* |
[-2,-1,0,1,1,1,1,1,1,2,2,1,2,1,2,0,0,0,-1,0,0] |
Phi of -K* |
[-1,-1,-1,0,1,2,-1,0,1,0,2,0,1,1,1,1,0,1,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
2z^2+21z+35 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+21w^2z+35w |
Inner characteristic polynomial |
t^6+12t^4+11t^2+1 |
Outer characteristic polynomial |
t^7+20t^5+32t^3+6t |
Flat arrow polynomial |
4*K1**3 - 14*K1**2 - 4*K1*K2 - K1 + 7*K2 + K3 + 8 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 1888*K1**4*K2 - 5024*K1**4 + 640*K1**3*K2*K3 + 32*K1**3*K3*K4 - 928*K1**3*K3 - 256*K1**2*K2**4 + 1312*K1**2*K2**3 - 7376*K1**2*K2**2 - 512*K1**2*K2*K4 + 10864*K1**2*K2 - 480*K1**2*K3**2 - 32*K1**2*K3*K5 - 32*K1**2*K4**2 - 4640*K1**2 + 480*K1*K2**3*K3 - 864*K1*K2**2*K3 - 64*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 6448*K1*K2*K3 + 696*K1*K3*K4 + 80*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 968*K2**4 - 240*K2**2*K3**2 - 48*K2**2*K4**2 + 904*K2**2*K4 - 3758*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 1436*K3**2 - 302*K4**2 - 28*K5**2 - 2*K6**2 + 4124 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |