Gauss code |
O1O2O3U2O4U5U3O5O6U1U6U4 |
R3 orbit |
{'O1O2O3U2O4U5U3O5O6U1U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5U3O5O6U1U6O4U2 |
Gauss code of K* |
O1O2O3U1U4U5O4U3O6O5U6U2 |
Gauss code of -K* |
O1O2O3U2U4O5O4U1O6U5U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 2 -1 1],[ 2 0 -1 2 3 1 1],[ 1 1 0 1 1 0 0],[-1 -2 -1 0 0 -1 0],[-2 -3 -1 0 0 -2 0],[ 1 -1 0 1 2 0 1],[-1 -1 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 0 -1 -2 -3],[-1 0 0 0 0 -1 -1],[-1 0 0 0 -1 -1 -2],[ 1 1 0 1 0 0 1],[ 1 2 1 1 0 0 -1],[ 2 3 1 2 -1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,0,1,2,3,0,0,1,1,1,1,2,0,-1,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,1,2,3,0,0,1,1,1,1,2,0,0,0] |
Phi of -K |
[-2,-1,-1,1,1,2,0,2,1,2,1,0,1,1,1,1,2,2,0,1,1] |
Phi of K* |
[-2,-1,-1,1,1,2,1,1,1,2,1,0,1,1,1,1,2,2,0,0,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,1,1,2,3,0,0,1,1,1,1,2,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+24t^4+23t^2 |
Outer characteristic polynomial |
t^7+36t^5+39t^3+3t |
Flat arrow polynomial |
4*K1**3 - 4*K1**2 - 8*K1*K2 + K1 + 2*K2 + 3*K3 + 3 |
2-strand cable arrow polynomial |
2688*K1**4*K2 - 6928*K1**4 + 1184*K1**3*K2*K3 + 96*K1**3*K3*K4 - 1312*K1**3*K3 - 128*K1**2*K2**4 + 928*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 8272*K1**2*K2**2 + 32*K1**2*K2*K3*K5 - 2080*K1**2*K2*K4 + 11232*K1**2*K2 - 976*K1**2*K3**2 - 368*K1**2*K4**2 - 32*K1**2*K5**2 - 4296*K1**2 + 544*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 576*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 9240*K1*K2*K3 - 32*K1*K2*K4*K5 + 2880*K1*K3*K4 + 544*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 1040*K2**4 - 32*K2**3*K6 - 496*K2**2*K3**2 - 64*K2**2*K4**2 + 2216*K2**2*K4 - 4906*K2**2 + 728*K2*K3*K5 + 56*K2*K4*K6 + 8*K3**2*K6 - 2704*K3**2 - 1396*K4**2 - 312*K5**2 - 22*K6**2 + 5154 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {4}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |