Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1519

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,1,1,0,0,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1519']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+31t^5+25t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1519']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 448*K1**4*K2 - 3504*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 928*K1**3*K3 - 2048*K1**2*K2**2 - 512*K1**2*K2*K4 + 7456*K1**2*K2 - 688*K1**2*K3**2 - 144*K1**2*K4**2 - 4584*K1**2 - 448*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 5200*K1*K2*K3 + 1432*K1*K3*K4 + 192*K1*K4*K5 - 64*K2**4 - 64*K2**2*K3**2 - 16*K2**2*K4**2 + 656*K2**2*K4 - 4044*K2**2 + 160*K2*K3*K5 + 32*K2*K4*K6 - 2052*K3**2 - 692*K4**2 - 108*K5**2 - 12*K6**2 + 4138
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1519']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3658', 'vk6.3753', 'vk6.3944', 'vk6.4039', 'vk6.4476', 'vk6.4571', 'vk6.5862', 'vk6.5989', 'vk6.7149', 'vk6.7324', 'vk6.7415', 'vk6.7907', 'vk6.8026', 'vk6.9341', 'vk6.17910', 'vk6.18007', 'vk6.18763', 'vk6.24445', 'vk6.24888', 'vk6.25349', 'vk6.37510', 'vk6.43880', 'vk6.44243', 'vk6.44546', 'vk6.48298', 'vk6.48361', 'vk6.50087', 'vk6.50197', 'vk6.50568', 'vk6.50631', 'vk6.55855', 'vk6.60727']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U3U5O6O5U1U6U4
R3 orbit {'O1O2O3U2O4U3U5O6O5U1U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U3O6O5U6U1O4U2
Gauss code of K* O1O2O3U1U4U5O4U3O5O6U2U6
Gauss code of -K* O1O2O3U4U2O4O5U1O6U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 2 1 0],[ 2 0 -1 1 3 2 0],[ 1 1 0 1 1 1 0],[ 0 -1 -1 0 1 0 0],[-2 -3 -1 -1 0 -1 -1],[-1 -2 -1 0 1 0 0],[ 0 0 0 0 1 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -1 -3],[-1 1 0 0 0 -1 -2],[ 0 1 0 0 0 0 0],[ 0 1 0 0 0 -1 -1],[ 1 1 1 0 1 0 1],[ 2 3 2 0 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,1,1,3,0,0,1,2,0,0,0,1,1,-1]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,1,1,0,0,1,0,1,1]
Phi of -K [-2,-1,0,0,1,2,2,1,2,1,1,0,1,1,2,0,1,1,1,1,0]
Phi of K* [-2,-1,0,0,1,2,0,1,1,2,1,1,1,1,1,0,0,1,1,2,2]
Phi of -K* [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,1,1,0,0,1,0,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+21t^4+11t^2+1
Outer characteristic polynomial t^7+31t^5+25t^3+5t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -128*K1**6 + 448*K1**4*K2 - 3504*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 928*K1**3*K3 - 2048*K1**2*K2**2 - 512*K1**2*K2*K4 + 7456*K1**2*K2 - 688*K1**2*K3**2 - 144*K1**2*K4**2 - 4584*K1**2 - 448*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 5200*K1*K2*K3 + 1432*K1*K3*K4 + 192*K1*K4*K5 - 64*K2**4 - 64*K2**2*K3**2 - 16*K2**2*K4**2 + 656*K2**2*K4 - 4044*K2**2 + 160*K2*K3*K5 + 32*K2*K4*K6 - 2052*K3**2 - 692*K4**2 - 108*K5**2 - 12*K6**2 + 4138
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact