Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,2,2,1,0,1,1,1,0,1,-1,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1518'] |
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
Outer characteristic polynomial of the knot is: t^7+26t^5+26t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1518'] |
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 1152*K1**4*K2 - 1840*K1**4 + 224*K1**3*K2*K3 - 128*K1**3*K3 + 320*K1**2*K2**3 - 4704*K1**2*K2**2 - 64*K1**2*K2*K4 + 5312*K1**2*K2 - 240*K1**2*K3**2 - 2592*K1**2 - 288*K1*K2**2*K3 + 3712*K1*K2*K3 + 312*K1*K3*K4 - 120*K2**4 + 152*K2**2*K4 - 2056*K2**2 - 792*K3**2 - 98*K4**2 + 2120 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1518'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4412', 'vk6.4507', 'vk6.5798', 'vk6.5925', 'vk6.7859', 'vk6.7962', 'vk6.9277', 'vk6.9396', 'vk6.10163', 'vk6.10234', 'vk6.10377', 'vk6.17878', 'vk6.17943', 'vk6.18292', 'vk6.18627', 'vk6.24381', 'vk6.25181', 'vk6.30054', 'vk6.30115', 'vk6.36910', 'vk6.37368', 'vk6.43816', 'vk6.44131', 'vk6.44453', 'vk6.48619', 'vk6.50518', 'vk6.50599', 'vk6.51123', 'vk6.51678', 'vk6.55831', 'vk6.56079', 'vk6.65501'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U3U5O6O5U1U4U6 |
R3 orbit | {'O1O2O3U2O4U3U5O6O5U1U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5U3O6O4U6U1O5U2 |
Gauss code of K* | O1O2O3U1U4U5O4U2O5O6U3U6 |
Gauss code of -K* | O1O2O3U4U1O4O5U2O6U5U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 0 1 1 1],[ 2 0 -1 1 2 2 1],[ 1 1 0 1 1 1 0],[ 0 -1 -1 0 1 0 1],[-1 -2 -1 -1 0 -1 0],[-1 -2 -1 0 1 0 1],[-1 -1 0 -1 0 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 0 -1 0 -1],[-1 -1 0 0 -1 -1 -2],[ 0 0 1 1 0 -1 -1],[ 1 1 0 1 1 0 1],[ 2 2 1 2 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,1,0,1,1,1,2,1,1,-1] |
Phi over symmetry | [-2,-1,0,1,1,1,-1,1,1,2,2,1,0,1,1,1,0,1,-1,0,1] |
Phi of -K | [-2,-1,0,1,1,1,2,1,1,1,2,0,1,1,2,0,1,0,1,0,-1] |
Phi of K* | [-1,-1,-1,0,1,2,-1,0,0,1,1,1,1,1,1,0,2,2,0,1,2] |
Phi of -K* | [-2,-1,0,1,1,1,-1,1,1,2,2,1,0,1,1,1,0,1,-1,0,1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2+20w^2z+29w |
Inner characteristic polynomial | t^6+18t^4+9t^2+1 |
Outer characteristic polynomial | t^7+26t^5+26t^3+5t |
Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
2-strand cable arrow polynomial | -384*K1**4*K2**2 + 1152*K1**4*K2 - 1840*K1**4 + 224*K1**3*K2*K3 - 128*K1**3*K3 + 320*K1**2*K2**3 - 4704*K1**2*K2**2 - 64*K1**2*K2*K4 + 5312*K1**2*K2 - 240*K1**2*K3**2 - 2592*K1**2 - 288*K1*K2**2*K3 + 3712*K1*K2*K3 + 312*K1*K3*K4 - 120*K2**4 + 152*K2**2*K4 - 2056*K2**2 - 792*K3**2 - 98*K4**2 + 2120 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}]] |
If K is slice | False |