Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1516

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,2,2,3,0,0,2,1,0,1,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1516']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+24t^5+37t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1516']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 352*K1**4*K2 - 1424*K1**4 + 352*K1**3*K2*K3 - 544*K1**3*K3 + 128*K1**2*K2**3 - 1344*K1**2*K2**2 - 160*K1**2*K2*K4 + 3376*K1**2*K2 - 464*K1**2*K3**2 - 2224*K1**2 - 96*K1*K2**2*K3 + 2624*K1*K2*K3 + 464*K1*K3*K4 - 56*K2**4 + 112*K2**2*K4 - 1728*K2**2 - 912*K3**2 - 146*K4**2 + 1816
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1516']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4415', 'vk6.4512', 'vk6.4842', 'vk6.5187', 'vk6.5801', 'vk6.5930', 'vk6.6413', 'vk6.6417', 'vk6.6846', 'vk6.7975', 'vk6.8370', 'vk6.8382', 'vk6.8799', 'vk6.9288', 'vk6.9409', 'vk6.9737', 'vk6.17884', 'vk6.17949', 'vk6.18285', 'vk6.18622', 'vk6.24391', 'vk6.25173', 'vk6.30039', 'vk6.30102', 'vk6.36903', 'vk6.37363', 'vk6.39837', 'vk6.39843', 'vk6.43826', 'vk6.44120', 'vk6.44445', 'vk6.46396', 'vk6.46405', 'vk6.47974', 'vk6.47984', 'vk6.48611', 'vk6.49081', 'vk6.49908', 'vk6.50596', 'vk6.51119']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U3U1O5O6U5U4U6
R3 orbit {'O1O2U1O3O4U2U3O5O6U5U4U6', 'O1O2O3U2O4U3U1O5O6U5U4U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5U6O4O6U3U1O5U2
Gauss code of K* O1O2O3U4U5U6O5U2O6O4U1U3
Gauss code of -K* O1O2O3U1U3O4O5U2O6U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 1 -1 2],[ 1 0 -1 1 2 0 1],[ 1 1 0 1 1 0 0],[ 0 -1 -1 0 1 0 1],[-1 -2 -1 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 -1 0 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -2 -1 0 -1 -1],[-1 2 0 -1 -1 0 -2],[ 0 1 1 0 -1 0 -1],[ 1 0 1 1 0 0 1],[ 1 1 0 0 0 0 0],[ 1 1 2 1 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,2,1,0,1,1,1,1,0,2,1,0,1,0,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,2,2,3,0,0,2,1,0,1,0,0,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,1,3,0,0,0,2,1,2,2,0,1,-1]
Phi of K* [-2,-1,0,1,1,1,-1,1,2,2,3,0,0,2,1,0,1,0,0,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,2,1,0,1,1,0,0,0,1,1,1,2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^6+16t^4+12t^2
Outer characteristic polynomial t^7+24t^5+37t^3+3t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -128*K1**4*K2**2 + 352*K1**4*K2 - 1424*K1**4 + 352*K1**3*K2*K3 - 544*K1**3*K3 + 128*K1**2*K2**3 - 1344*K1**2*K2**2 - 160*K1**2*K2*K4 + 3376*K1**2*K2 - 464*K1**2*K3**2 - 2224*K1**2 - 96*K1*K2**2*K3 + 2624*K1*K2*K3 + 464*K1*K3*K4 - 56*K2**4 + 112*K2**2*K4 - 1728*K2**2 - 912*K3**2 - 146*K4**2 + 1816
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}]]
If K is slice False
Contact