Min(phi) over symmetries of the knot is: [-2,0,0,2,0,1,3,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1515', '6.1704'] |
Arrow polynomial of the knot is: -12*K1**2 - 8*K1*K2 + 4*K1 + 6*K2 + 4*K3 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.763', '6.1515', '6.1741', '6.1825'] |
Outer characteristic polynomial of the knot is: t^5+20t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1515'] |
2-strand cable arrow polynomial of the knot is: -640*K1**6 - 256*K1**4*K2**2 + 2176*K1**4*K2 - 5488*K1**4 + 416*K1**3*K2*K3 + 64*K1**3*K3*K4 - 384*K1**3*K3 + 32*K1**3*K4*K5 - 4048*K1**2*K2**2 - 544*K1**2*K2*K4 + 9136*K1**2*K2 - 1424*K1**2*K3**2 - 224*K1**2*K3*K5 - 480*K1**2*K4**2 - 32*K1**2*K4*K6 - 32*K1**2*K5**2 - 5308*K1**2 - 608*K1*K2**2*K3 - 32*K1*K2**2*K5 - 352*K1*K2*K3*K4 + 6792*K1*K2*K3 - 32*K1*K3**2*K5 + 3480*K1*K3*K4 + 952*K1*K4*K5 + 48*K1*K5*K6 - 304*K2**4 - 224*K2**2*K3**2 - 64*K2**2*K4**2 + 1248*K2**2*K4 - 5136*K2**2 + 592*K2*K3*K5 + 64*K2*K4*K6 + 8*K3**2*K6 - 3140*K3**2 - 1728*K4**2 - 448*K5**2 - 24*K6**2 + 5942 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1515'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4786', 'vk6.4792', 'vk6.5121', 'vk6.5127', 'vk6.6349', 'vk6.6779', 'vk6.6789', 'vk6.8313', 'vk6.8319', 'vk6.8759', 'vk6.9683', 'vk6.9693', 'vk6.9992', 'vk6.10002', 'vk6.21007', 'vk6.21011', 'vk6.22431', 'vk6.22435', 'vk6.28459', 'vk6.40227', 'vk6.40239', 'vk6.42158', 'vk6.46725', 'vk6.46737', 'vk6.48813', 'vk6.49031', 'vk6.49041', 'vk6.49851', 'vk6.49857', 'vk6.51513', 'vk6.58959', 'vk6.69797'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U1U5O6O5U4U6U3 |
R3 orbit | {'O1O2O3U2O4U1U5O6O5U4U6U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4U5O6O4U6U3O5U2 |
Gauss code of K* | O1O2O3U4U5U3O5U1O4O6U2U6 |
Gauss code of -K* | O1O2O3U4U2O4O5U3O6U1U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 2 0 1 0],[ 2 0 0 3 1 2 1],[ 1 0 0 1 0 1 0],[-2 -3 -1 0 -1 -1 0],[ 0 -1 0 1 0 0 0],[-1 -2 -1 1 0 0 0],[ 0 -1 0 0 0 0 0]] |
Primitive based matrix | [[ 0 2 0 0 -2],[-2 0 0 -1 -3],[ 0 0 0 0 -1],[ 0 1 0 0 -1],[ 2 3 1 1 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-2,0,0,2,0,1,3,0,1,1] |
Phi over symmetry | [-2,0,0,2,0,1,3,0,1,1] |
Phi of -K | [-2,0,0,2,1,1,1,0,1,2] |
Phi of K* | [-2,0,0,2,1,2,1,0,1,1] |
Phi of -K* | [-2,0,0,2,1,1,3,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^4+12t^2+1 |
Outer characteristic polynomial | t^5+20t^3+5t |
Flat arrow polynomial | -12*K1**2 - 8*K1*K2 + 4*K1 + 6*K2 + 4*K3 + 7 |
2-strand cable arrow polynomial | -640*K1**6 - 256*K1**4*K2**2 + 2176*K1**4*K2 - 5488*K1**4 + 416*K1**3*K2*K3 + 64*K1**3*K3*K4 - 384*K1**3*K3 + 32*K1**3*K4*K5 - 4048*K1**2*K2**2 - 544*K1**2*K2*K4 + 9136*K1**2*K2 - 1424*K1**2*K3**2 - 224*K1**2*K3*K5 - 480*K1**2*K4**2 - 32*K1**2*K4*K6 - 32*K1**2*K5**2 - 5308*K1**2 - 608*K1*K2**2*K3 - 32*K1*K2**2*K5 - 352*K1*K2*K3*K4 + 6792*K1*K2*K3 - 32*K1*K3**2*K5 + 3480*K1*K3*K4 + 952*K1*K4*K5 + 48*K1*K5*K6 - 304*K2**4 - 224*K2**2*K3**2 - 64*K2**2*K4**2 + 1248*K2**2*K4 - 5136*K2**2 + 592*K2*K3*K5 + 64*K2*K4*K6 + 8*K3**2*K6 - 3140*K3**2 - 1728*K4**2 - 448*K5**2 - 24*K6**2 + 5942 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {2, 5}, {4}, {1, 3}]] |
If K is slice | False |