Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1512

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,1,2,2,3,0,1,2,0,2,2,2,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1512']
Arrow polynomial of the knot is: -12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.546', '6.591', '6.598', '6.666', '6.680', '6.742', '6.778', '6.805', '6.822', '6.824', '6.1129', '6.1512', '6.1647', '6.1678', '6.1705', '6.1847', '6.1857']
Outer characteristic polynomial of the knot is: t^7+30t^5+59t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1512']
2-strand cable arrow polynomial of the knot is: -448*K1**6 - 320*K1**4*K2**2 + 1248*K1**4*K2 - 3552*K1**4 + 608*K1**3*K2*K3 + 32*K1**3*K3*K4 - 544*K1**3*K3 - 3856*K1**2*K2**2 - 416*K1**2*K2*K4 + 7528*K1**2*K2 - 640*K1**2*K3**2 - 176*K1**2*K4**2 - 3788*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 5416*K1*K2*K3 + 1344*K1*K3*K4 + 232*K1*K4*K5 - 272*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 888*K2**2*K4 - 3700*K2**2 + 176*K2*K3*K5 + 32*K2*K4*K6 - 1796*K3**2 - 688*K4**2 - 104*K5**2 - 4*K6**2 + 3790
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1512']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4127', 'vk6.4160', 'vk6.5369', 'vk6.5402', 'vk6.7495', 'vk6.7524', 'vk6.9000', 'vk6.9033', 'vk6.12444', 'vk6.12477', 'vk6.13339', 'vk6.13562', 'vk6.13595', 'vk6.14248', 'vk6.14697', 'vk6.14740', 'vk6.15198', 'vk6.15855', 'vk6.15900', 'vk6.30853', 'vk6.30886', 'vk6.32041', 'vk6.32074', 'vk6.33055', 'vk6.33088', 'vk6.33857', 'vk6.34316', 'vk6.48475', 'vk6.50260', 'vk6.53527', 'vk6.53946', 'vk6.54273']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U4O5O6U5U3U6
R3 orbit {'O1O2O3U2O4U1U4O5O6U5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O4O5U6U3O6U2
Gauss code of K* O1O2O3U4U5U2O5U6O4O6U1U3
Gauss code of -K* O1O2O3U1U3O4O5U4O6U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 -1 2],[ 2 0 0 3 1 0 1],[ 1 0 0 1 0 0 1],[-1 -3 -1 0 0 0 2],[-1 -1 0 0 0 0 0],[ 1 0 0 0 0 0 1],[-2 -1 -1 -2 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -1 -1],[-1 0 0 0 0 0 -1],[-1 2 0 0 0 -1 -3],[ 1 1 0 0 0 0 0],[ 1 1 0 1 0 0 0],[ 2 1 1 3 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,0,2,1,1,1,0,0,0,1,0,1,3,0,0,0]
Phi over symmetry [-2,-1,-1,1,1,2,-1,1,2,2,3,0,1,2,0,2,2,2,0,1,1]
Phi of -K [-2,-1,-1,1,1,2,1,1,0,2,3,0,1,2,2,2,2,2,0,-1,1]
Phi of K* [-2,-1,-1,1,1,2,-1,1,2,2,3,0,1,2,0,2,2,2,0,1,1]
Phi of -K* [-2,-1,-1,1,1,2,0,0,1,3,1,0,0,0,1,0,1,1,0,0,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+18t^4+21t^2+1
Outer characteristic polynomial t^7+30t^5+59t^3+5t
Flat arrow polynomial -12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7
2-strand cable arrow polynomial -448*K1**6 - 320*K1**4*K2**2 + 1248*K1**4*K2 - 3552*K1**4 + 608*K1**3*K2*K3 + 32*K1**3*K3*K4 - 544*K1**3*K3 - 3856*K1**2*K2**2 - 416*K1**2*K2*K4 + 7528*K1**2*K2 - 640*K1**2*K3**2 - 176*K1**2*K4**2 - 3788*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 5416*K1*K2*K3 + 1344*K1*K3*K4 + 232*K1*K4*K5 - 272*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 888*K2**2*K4 - 3700*K2**2 + 176*K2*K3*K5 + 32*K2*K4*K6 - 1796*K3**2 - 688*K4**2 - 104*K5**2 - 4*K6**2 + 3790
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice True
Contact