Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1511

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,3,1,1,1,1,0,1,1,0,1,2,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1511']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+28t^5+43t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.374', '6.1511', '6.1662']
2-strand cable arrow polynomial of the knot is: 160*K1**4*K2 - 3104*K1**4 - 160*K1**3*K3 - 2864*K1**2*K2**2 + 5608*K1**2*K2 - 1532*K1**2 + 2312*K1*K2*K3 - 200*K2**4 + 104*K2**2*K4 - 1616*K2**2 - 420*K3**2 - 2*K4**2 + 1712
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1511']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13384', 'vk6.13467', 'vk6.13658', 'vk6.13766', 'vk6.14198', 'vk6.14441', 'vk6.15670', 'vk6.16124', 'vk6.16765', 'vk6.16781', 'vk6.16891', 'vk6.19051', 'vk6.19298', 'vk6.19593', 'vk6.23192', 'vk6.23274', 'vk6.25660', 'vk6.26490', 'vk6.33135', 'vk6.33184', 'vk6.33294', 'vk6.35183', 'vk6.35209', 'vk6.37761', 'vk6.42674', 'vk6.42691', 'vk6.42794', 'vk6.44722', 'vk6.53568', 'vk6.53698', 'vk6.54969', 'vk6.64613']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U4O5O6U3U6U5
R3 orbit {'O1O2O3U2O4U1U4O5O6U3U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U1O5O4U6U3O6U2
Gauss code of K* O1O2O3U4U5U1O5U6O4O6U3U2
Gauss code of -K* O1O2O3U2U1O4O5U4O6U3U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 1 1 1],[ 2 0 0 3 1 1 1],[ 1 0 0 1 0 1 1],[ 0 -3 -1 0 0 2 1],[-1 -1 0 0 0 0 0],[-1 -1 -1 -2 0 0 0],[-1 -1 -1 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -2 -1 -1],[ 0 0 1 2 0 -1 -3],[ 1 0 1 1 1 0 0],[ 2 1 1 1 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,0,0,0,0,1,0,1,1,1,2,1,1,1,3,0]
Phi over symmetry [-2,-1,0,1,1,1,0,3,1,1,1,1,0,1,1,0,1,2,0,0,0]
Phi of -K [-2,-1,0,1,1,1,1,-1,2,2,2,0,1,1,2,-1,0,1,0,0,0]
Phi of K* [-1,-1,-1,0,1,2,0,0,-1,1,2,0,0,1,2,1,2,2,0,-1,1]
Phi of -K* [-2,-1,0,1,1,1,0,3,1,1,1,1,0,1,1,0,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -4w^4z^2+8w^3z^2-4w^3z+21w^2z+19w
Inner characteristic polynomial t^6+20t^4+18t^2+1
Outer characteristic polynomial t^7+28t^5+43t^3+8t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 160*K1**4*K2 - 3104*K1**4 - 160*K1**3*K3 - 2864*K1**2*K2**2 + 5608*K1**2*K2 - 1532*K1**2 + 2312*K1*K2*K3 - 200*K2**4 + 104*K2**2*K4 - 1616*K2**2 - 420*K3**2 - 2*K4**2 + 1712
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact