Gauss code |
O1O2O3O4O5U1O6U3U2U5U6U4 |
R3 orbit |
{'O1O2O3O4O5U1O6U3U2U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U6U1U4U3O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U2U1U5U3O6U4 |
Gauss code of -K* |
O1O2O3O4O5U2O6U3U1U5U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 -2 3 2 3],[ 4 0 2 1 4 3 3],[ 2 -2 0 0 4 2 3],[ 2 -1 0 0 3 1 2],[-3 -4 -4 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-3 -3 -3 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 2 -2 -2 -4],[-3 0 1 -1 -3 -4 -4],[-3 -1 0 -1 -2 -3 -3],[-2 1 1 0 -1 -2 -3],[ 2 3 2 1 0 0 -1],[ 2 4 3 2 0 0 -2],[ 4 4 3 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-2,2,2,4,-1,1,3,4,4,1,2,3,3,1,2,3,0,1,2] |
Phi over symmetry |
[-4,-2,-2,2,3,3,0,1,3,3,4,0,2,1,2,3,2,3,0,0,-1] |
Phi of -K |
[-4,-2,-2,2,3,3,0,1,3,3,4,0,2,1,2,3,2,3,0,0,-1] |
Phi of K* |
[-3,-3,-2,2,2,4,-1,0,2,3,4,0,1,2,3,2,3,3,0,0,1] |
Phi of -K* |
[-4,-2,-2,2,3,3,1,2,3,3,4,0,1,2,3,2,3,4,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+t^2 |
Normalized Jones-Krushkal polynomial |
3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w |
Inner characteristic polynomial |
t^6+85t^4+49t^2 |
Outer characteristic polynomial |
t^7+131t^5+162t^3+7t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial |
-96*K1**3*K3 + 128*K1**2*K2**2*K4 - 1040*K1**2*K2**2 - 448*K1**2*K2*K4 + 2616*K1**2*K2 - 320*K1**2*K3**2 - 176*K1**2*K4**2 - 3900*K1**2 - 768*K1*K2**2*K3 - 160*K1*K2**2*K5 + 32*K1*K2*K3**3 - 352*K1*K2*K3*K4 + 3976*K1*K2*K3 - 96*K1*K2*K4*K5 + 2272*K1*K3*K4 + 592*K1*K4*K5 + 64*K1*K5*K6 - 72*K2**4 - 64*K2**2*K3**2 - 80*K2**2*K4**2 + 1248*K2**2*K4 - 3164*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 440*K2*K3*K5 + 160*K2*K4*K6 + 16*K2*K5*K7 - 32*K3**4 - 32*K3**2*K4**2 + 40*K3**2*K6 - 2232*K3**2 + 32*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1458*K4**2 - 356*K5**2 - 60*K6**2 - 8*K7**2 - 2*K8**2 + 3426 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |