Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1508

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,2,1,0,0,1,1,2,-1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1508']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 8*K1*K2 + K1 + K2 + 3*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1030', '6.1062', '6.1226', '6.1508', '6.1525', '6.1596', '6.1724', '6.1729', '6.1735', '6.1738', '6.1789', '6.1809', '6.1921']
Outer characteristic polynomial of the knot is: t^7+28t^5+60t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1508']
2-strand cable arrow polynomial of the knot is: 800*K1**4*K2 - 2432*K1**4 + 128*K1**3*K2*K3 - 96*K1**3*K3 + 736*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6256*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 8584*K1**2*K2 - 416*K1**2*K3**2 - 32*K1**2*K4**2 - 5092*K1**2 + 512*K1*K2**3*K3 - 2496*K1*K2**2*K3 - 480*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 7944*K1*K2*K3 + 1424*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1464*K2**4 - 96*K2**3*K6 - 704*K2**2*K3**2 - 128*K2**2*K4**2 + 2552*K2**2*K4 - 4850*K2**2 + 736*K2*K3*K5 + 72*K2*K4*K6 - 2324*K3**2 - 866*K4**2 - 168*K5**2 - 6*K6**2 + 4592
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1508']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11488', 'vk6.11794', 'vk6.12812', 'vk6.13145', 'vk6.17062', 'vk6.17304', 'vk6.20903', 'vk6.21065', 'vk6.22315', 'vk6.22493', 'vk6.23787', 'vk6.28381', 'vk6.31249', 'vk6.31600', 'vk6.32822', 'vk6.35578', 'vk6.36032', 'vk6.40031', 'vk6.40314', 'vk6.42085', 'vk6.43277', 'vk6.46563', 'vk6.46771', 'vk6.48028', 'vk6.52251', 'vk6.53408', 'vk6.57709', 'vk6.57719', 'vk6.58895', 'vk6.59949', 'vk6.64422', 'vk6.69757']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U3O5O6U4U6U5
R3 orbit {'O1O2O3U2O4U1U3O5O6U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O5O4U1U3O6U2
Gauss code of K* O1O2O3U4U5U6O5U1O4O6U3U2
Gauss code of -K* O1O2O3U2U1O4O5U3O6U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 0 2 2 1 1],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 1 1],[ 0 -2 -1 -1 0 2 1],[-1 -1 0 -1 -2 0 0],[-1 -1 0 -1 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 1 -1 -2],[-1 -1 0 0 -1 0 -1],[-1 -1 0 0 -2 0 -1],[ 0 -1 1 2 0 -1 -2],[ 1 1 0 0 1 0 0],[ 2 2 1 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,-1,1,2,0,1,0,1,2,0,1,1,2,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,2,1,0,0,1,1,2,-1,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,1,0,1,2,2,0,1,2,2,2,-1,0,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,-1,2,2,1,2,1,1,0,2,2,0,0,1]
Phi of -K* [-2,-1,0,1,1,1,0,2,1,1,2,1,0,0,1,1,2,-1,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 7z^2+28z+29
Enhanced Jones-Krushkal polynomial 7w^3z^2+28w^2z+29w
Inner characteristic polynomial t^6+20t^4+17t^2+1
Outer characteristic polynomial t^7+28t^5+60t^3+11t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 8*K1*K2 + K1 + K2 + 3*K3 + 2
2-strand cable arrow polynomial 800*K1**4*K2 - 2432*K1**4 + 128*K1**3*K2*K3 - 96*K1**3*K3 + 736*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6256*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 8584*K1**2*K2 - 416*K1**2*K3**2 - 32*K1**2*K4**2 - 5092*K1**2 + 512*K1*K2**3*K3 - 2496*K1*K2**2*K3 - 480*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 7944*K1*K2*K3 + 1424*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1464*K2**4 - 96*K2**3*K6 - 704*K2**2*K3**2 - 128*K2**2*K4**2 + 2552*K2**2*K4 - 4850*K2**2 + 736*K2*K3*K5 + 72*K2*K4*K6 - 2324*K3**2 - 866*K4**2 - 168*K5**2 - 6*K6**2 + 4592
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact