Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,1,3,1,1,1,1,-1,0,0,0,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1503'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+32t^5+32t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1503'] |
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 352*K1**4*K2 - 416*K1**4 + 64*K1**3*K2*K3 - 32*K1**3*K3 + 512*K1**2*K2**3 - 1984*K1**2*K2**2 - 96*K1**2*K2*K4 + 2296*K1**2*K2 - 1352*K1**2 + 888*K1*K2*K3 - 280*K2**4 + 72*K2**2*K4 - 584*K2**2 - 40*K3**2 - 2*K4**2 + 792 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1503'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4193', 'vk6.4274', 'vk6.5443', 'vk6.5559', 'vk6.7552', 'vk6.7637', 'vk6.9058', 'vk6.9139', 'vk6.18237', 'vk6.18574', 'vk6.24709', 'vk6.25124', 'vk6.36828', 'vk6.37293', 'vk6.44068', 'vk6.44409', 'vk6.48513', 'vk6.48594', 'vk6.49209', 'vk6.49315', 'vk6.50300', 'vk6.50378', 'vk6.51063', 'vk6.51096', 'vk6.56040', 'vk6.56316', 'vk6.60593', 'vk6.60934', 'vk6.65702', 'vk6.65998', 'vk6.68747', 'vk6.68957', 'vk6.83504', 'vk6.83834', 'vk6.83981', 'vk6.85401', 'vk6.86313', 'vk6.87118', 'vk6.88341', 'vk6.88971'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U5U4O6O5U2U3U6 |
R3 orbit | {'O1O2O3U4U5O6U3O5U1U2O4U6', 'O1O2O3U1O4U5U4O6O5U2U3U6'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3U4U1U2O5O4U6U5O6U3 |
Gauss code of K* | O1O2O3U4U1U2O4U5O6O5U3U6 |
Gauss code of -K* | O1O2O3U4U1O5O4U5O6U2U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 1 1 0 1],[ 2 0 1 2 0 2 2],[ 1 -1 0 1 1 0 1],[-1 -2 -1 0 1 -2 0],[-1 0 -1 -1 0 -1 -1],[ 0 -2 0 2 1 0 1],[-1 -2 -1 0 1 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -1 -1 -1 0],[-1 0 1 0 -2 -1 -2],[ 0 1 1 2 0 0 -2],[ 1 1 1 1 0 0 -1],[ 2 2 0 2 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,0,1,1,2,1,1,1,0,2,1,2,0,2,1] |
Phi over symmetry | [-2,-1,0,1,1,1,0,0,1,1,3,1,1,1,1,-1,0,0,0,-1,-1] |
Phi of -K | [-2,-1,0,1,1,1,0,0,1,1,3,1,1,1,1,-1,0,0,0,-1,-1] |
Phi of K* | [-1,-1,-1,0,1,2,-1,-1,0,1,3,0,-1,1,1,0,1,1,1,0,0] |
Phi of -K* | [-2,-1,0,1,1,1,1,2,0,2,2,0,1,1,1,1,1,2,-1,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+17w^2z+19w |
Inner characteristic polynomial | t^6+24t^4+11t^2+1 |
Outer characteristic polynomial | t^7+32t^5+32t^3+4t |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | -192*K1**4*K2**2 + 352*K1**4*K2 - 416*K1**4 + 64*K1**3*K2*K3 - 32*K1**3*K3 + 512*K1**2*K2**3 - 1984*K1**2*K2**2 - 96*K1**2*K2*K4 + 2296*K1**2*K2 - 1352*K1**2 + 888*K1*K2*K3 - 280*K2**4 + 72*K2**2*K4 - 584*K2**2 - 40*K3**2 - 2*K4**2 + 792 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}]] |
If K is slice | False |