Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1502

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,1,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1502', '7.39599']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874']
Outer characteristic polynomial of the knot is: t^7+22t^5+30t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1502', '7.39599']
2-strand cable arrow polynomial of the knot is: -320*K1**6 - 512*K1**4*K2**2 + 3520*K1**4*K2 - 8480*K1**4 + 864*K1**3*K2*K3 - 1248*K1**3*K3 - 256*K1**2*K2**4 + 1952*K1**2*K2**3 - 10704*K1**2*K2**2 - 640*K1**2*K2*K4 + 13776*K1**2*K2 - 480*K1**2*K3**2 - 3308*K1**2 + 608*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 192*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7328*K1*K2*K3 + 416*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1528*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 16*K2**2*K4**2 + 1080*K2**2*K4 - 3534*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 1152*K3**2 - 146*K4**2 - 12*K5**2 - 2*K6**2 + 4128
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1502']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4255', 'vk6.4261', 'vk6.4334', 'vk6.4340', 'vk6.5534', 'vk6.5542', 'vk6.5653', 'vk6.5661', 'vk6.7718', 'vk6.7724', 'vk6.9120', 'vk6.9126', 'vk6.9199', 'vk6.9205', 'vk6.19832', 'vk6.19833', 'vk6.26268', 'vk6.26269', 'vk6.26712', 'vk6.26713', 'vk6.38216', 'vk6.38217', 'vk6.44993', 'vk6.44994', 'vk6.48571', 'vk6.48577', 'vk6.49284', 'vk6.49292', 'vk6.50413', 'vk6.50419', 'vk6.66356', 'vk6.66357']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U3O6O5U6U4U2
R3 orbit {'O1O2O3U1O4U5U3O6O5U6U4U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U5O6O5U1U6O4U3
Gauss code of K* O1O2O3U4U3U5O4U2O6O5U1U6
Gauss code of -K* O1O2O3U4U3O5O4U2O6U5U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 1 0 -1],[ 2 0 2 1 1 1 0],[-1 -2 0 0 1 -1 -1],[-1 -1 0 0 0 -1 -1],[-1 -1 -1 0 0 0 -1],[ 0 -1 1 1 0 0 -1],[ 1 0 1 1 1 1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 -1 -1 -1],[ 0 1 0 1 0 -1 -1],[ 1 1 1 1 1 0 0],[ 2 2 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,2,0,0,1,1,1,1,1,1,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,1,1,0,-1,0]
Phi of -K [-2,-1,0,1,1,1,1,1,1,2,2,0,1,1,1,0,0,1,0,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,1,2,0,0,1,1,0,1,2,0,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,1,1,0,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+14t^4+17t^2+1
Outer characteristic polynomial t^7+22t^5+30t^3+4t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -320*K1**6 - 512*K1**4*K2**2 + 3520*K1**4*K2 - 8480*K1**4 + 864*K1**3*K2*K3 - 1248*K1**3*K3 - 256*K1**2*K2**4 + 1952*K1**2*K2**3 - 10704*K1**2*K2**2 - 640*K1**2*K2*K4 + 13776*K1**2*K2 - 480*K1**2*K3**2 - 3308*K1**2 + 608*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 192*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7328*K1*K2*K3 + 416*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1528*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 16*K2**2*K4**2 + 1080*K2**2*K4 - 3534*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 1152*K3**2 - 146*K4**2 - 12*K5**2 - 2*K6**2 + 4128
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact