Gauss code |
O1O2O3O4O5U1O6U2U5U6U4U3 |
R3 orbit |
{'O1O2O3O4O5U1O6U2U5U6U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U2U6U1U4O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U1U5U4U2O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U4U2U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 2 2 1 2],[ 4 0 1 4 3 2 2],[ 3 -1 0 4 3 1 2],[-2 -4 -4 0 0 -1 1],[-2 -3 -3 0 0 -1 1],[-1 -2 -1 1 1 0 1],[-2 -2 -2 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 2 1 -3 -4],[-2 0 1 0 -1 -3 -3],[-2 -1 0 -1 -1 -2 -2],[-2 0 1 0 -1 -4 -4],[-1 1 1 1 0 -1 -2],[ 3 3 2 4 1 0 -1],[ 4 3 2 4 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,-1,3,4,-1,0,1,3,3,1,1,2,2,1,4,4,1,2,1] |
Phi over symmetry |
[-4,-3,1,2,2,2,0,3,2,3,4,3,1,2,3,0,0,0,0,-1,-1] |
Phi of -K |
[-4,-3,1,2,2,2,0,3,2,3,4,3,1,2,3,0,0,0,0,-1,-1] |
Phi of K* |
[-2,-2,-2,-1,3,4,-1,-1,0,3,4,0,0,1,2,0,2,3,3,3,0] |
Phi of -K* |
[-4,-3,1,2,2,2,1,2,2,3,4,1,2,3,4,1,1,1,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4+t^3-3t^2-t |
Normalized Jones-Krushkal polynomial |
7z^2+26z+25 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2-2w^3z+28w^2z+25w |
Inner characteristic polynomial |
t^6+69t^4+22t^2+1 |
Outer characteristic polynomial |
t^7+107t^5+131t^3+10t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1**2 - 2*K1*K2 + K1 - 2*K2**2 - K2 + K3 + 2 |
2-strand cable arrow polynomial |
-64*K1**4 + 96*K1**3*K3*K4 + 96*K1**2*K2**2*K4 - 1472*K1**2*K2**2 + 64*K1**2*K2*K4**2 - 704*K1**2*K2*K4 + 4056*K1**2*K2 - 672*K1**2*K3**2 - 64*K1**2*K3*K5 - 384*K1**2*K4**2 - 5120*K1**2 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 + 64*K1*K2*K3*K4**2 - 736*K1*K2*K3*K4 + 4808*K1*K2*K3 - 64*K1*K2*K4*K5 + 2720*K1*K3*K4 + 744*K1*K4*K5 - 32*K2**4*K4**2 + 128*K2**4*K4 - 488*K2**4 - 32*K2**2*K3**2 + 32*K2**2*K4**3 - 440*K2**2*K4**2 + 2264*K2**2*K4 - 4322*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 536*K2*K3*K5 + 304*K2*K4*K6 - 32*K3**2*K4**2 + 8*K3**2*K6 - 2440*K3**2 + 16*K3*K4*K7 - 8*K4**4 - 1774*K4**2 - 336*K5**2 - 38*K6**2 + 4372 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |