Gauss code |
O1O2O3O4O5O6U1U3U2U6U5U4 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U2U6U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U3U2U1U5U4U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U3U2U1U5U4U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -2 -2 3 3 3],[ 5 0 2 1 5 4 3],[ 2 -2 0 0 4 3 2],[ 2 -1 0 0 3 2 1],[-3 -5 -4 -3 0 0 0],[-3 -4 -3 -2 0 0 0],[-3 -3 -2 -1 0 0 0]] |
Primitive based matrix |
[[ 0 3 3 3 -2 -2 -5],[-3 0 0 0 -1 -2 -3],[-3 0 0 0 -2 -3 -4],[-3 0 0 0 -3 -4 -5],[ 2 1 2 3 0 0 -1],[ 2 2 3 4 0 0 -2],[ 5 3 4 5 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-3,2,2,5,0,0,1,2,3,0,2,3,4,3,4,5,0,1,2] |
Phi over symmetry |
[-5,-2,-2,3,3,3,1,2,3,4,5,0,1,2,3,2,3,4,0,0,0] |
Phi of -K |
[-5,-2,-2,3,3,3,1,2,3,4,5,0,1,2,3,2,3,4,0,0,0] |
Phi of K* |
[-3,-3,-3,2,2,5,0,0,1,2,3,0,2,3,4,3,4,5,0,1,2] |
Phi of -K* |
[-5,-2,-2,3,3,3,1,2,3,4,5,0,1,2,3,2,3,4,0,0,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-3t^3+2t^2 |
Normalized Jones-Krushkal polynomial |
z+3 |
Enhanced Jones-Krushkal polynomial |
-8w^5z+8w^4z-8w^3z+9w^2z+3w |
Inner characteristic polynomial |
t^6+98t^4+41t^2 |
Outer characteristic polynomial |
t^7+158t^5+261t^3 |
Flat arrow polynomial |
-2*K1*K4 + K3 + K5 + 1 |
2-strand cable arrow polynomial |
-32*K1**2 + 336*K1*K2*K3 - 2*K10**2 + 8*K10*K2*K8 - 32*K2**4 + 64*K2**3*K3*K5 - 576*K2**2*K3**2 - 128*K2**2*K5**2 - 8*K2**2*K8**2 - 532*K2**2 + 1344*K2*K3*K5 + 48*K2*K5*K7 + 40*K2*K6*K8 - 568*K3**2 + 48*K3*K5*K8 - 536*K5**2 - 18*K6**2 - 44*K8**2 + 586 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}]] |
If K is slice |
False |