Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1495

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,0,1,3,0,0,1,1,0,1,0,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1495']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+37t^5+43t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1495']
2-strand cable arrow polynomial of the knot is: -320*K1**4*K2**2 + 1120*K1**4*K2 - 2320*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 + 640*K1**2*K2**3 - 4992*K1**2*K2**2 - 640*K1**2*K2*K4 + 7952*K1**2*K2 - 208*K1**2*K3**2 - 5724*K1**2 + 96*K1*K2**3*K3 - 992*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7144*K1*K2*K3 + 1264*K1*K3*K4 + 128*K1*K4*K5 - 752*K2**4 - 528*K2**2*K3**2 - 48*K2**2*K4**2 + 1432*K2**2*K4 - 4636*K2**2 + 664*K2*K3*K5 + 32*K2*K4*K6 - 2496*K3**2 - 812*K4**2 - 212*K5**2 - 4*K6**2 + 4786
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1495']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16512', 'vk6.16603', 'vk6.18085', 'vk6.18421', 'vk6.22943', 'vk6.23038', 'vk6.24536', 'vk6.24953', 'vk6.34912', 'vk6.35019', 'vk6.36675', 'vk6.37097', 'vk6.42481', 'vk6.42592', 'vk6.43955', 'vk6.44270', 'vk6.54755', 'vk6.54850', 'vk6.55901', 'vk6.56185', 'vk6.59219', 'vk6.59282', 'vk6.60431', 'vk6.60784', 'vk6.64763', 'vk6.64824', 'vk6.65543', 'vk6.65853', 'vk6.68063', 'vk6.68126', 'vk6.68625', 'vk6.68838']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U2O5O6U3U4U6
R3 orbit {'O1O2O3U1O4U5U2O5O6U3U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U1O4O6U2U6O5U3
Gauss code of K* O1O2O3U4U5U1O4U2O6O5U6U3
Gauss code of -K* O1O2O3U1U4O5O4U2O6U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 1 -1 2],[ 2 0 1 2 2 1 1],[ 0 -1 0 0 1 0 2],[ 0 -2 0 0 1 0 2],[-1 -2 -1 -1 0 -1 1],[ 1 -1 0 0 1 0 2],[-2 -1 -2 -2 -1 -2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -2 -2 -2 -1],[-1 1 0 -1 -1 -1 -2],[ 0 2 1 0 0 0 -1],[ 0 2 1 0 0 0 -2],[ 1 2 1 0 0 0 -1],[ 2 1 2 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,2,2,2,1,1,1,1,2,0,0,1,0,2,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,0,1,3,0,0,1,1,0,1,0,1,1,0]
Phi of -K [-2,-1,0,0,1,2,0,0,1,1,3,1,1,1,1,0,0,0,0,0,0]
Phi of K* [-2,-1,0,0,1,2,0,0,0,1,3,0,0,1,1,0,1,0,1,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,2,1,0,0,1,2,0,1,2,1,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+27t^4+19t^2
Outer characteristic polynomial t^7+37t^5+43t^3+10t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -320*K1**4*K2**2 + 1120*K1**4*K2 - 2320*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 + 640*K1**2*K2**3 - 4992*K1**2*K2**2 - 640*K1**2*K2*K4 + 7952*K1**2*K2 - 208*K1**2*K3**2 - 5724*K1**2 + 96*K1*K2**3*K3 - 992*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7144*K1*K2*K3 + 1264*K1*K3*K4 + 128*K1*K4*K5 - 752*K2**4 - 528*K2**2*K3**2 - 48*K2**2*K4**2 + 1432*K2**2*K4 - 4636*K2**2 + 664*K2*K3*K5 + 32*K2*K4*K6 - 2496*K3**2 - 812*K4**2 - 212*K5**2 - 4*K6**2 + 4786
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact