Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,2,-1,0,0,0,1,0,1,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1494'] |
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870'] |
Outer characteristic polynomial of the knot is: t^7+19t^5+35t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1494'] |
2-strand cable arrow polynomial of the knot is: -512*K1**6 - 192*K1**4*K2**2 + 2080*K1**4*K2 - 6704*K1**4 + 896*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1984*K1**3*K3 + 128*K1**2*K2**2*K4 - 4608*K1**2*K2**2 - 896*K1**2*K2*K4 + 12384*K1**2*K2 - 1424*K1**2*K3**2 - 256*K1**2*K4**2 - 6172*K1**2 - 448*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 8096*K1*K2*K3 + 2328*K1*K3*K4 + 272*K1*K4*K5 - 104*K2**4 - 80*K2**2*K3**2 - 48*K2**2*K4**2 + 864*K2**2*K4 - 5668*K2**2 + 144*K2*K3*K5 + 32*K2*K4*K6 - 2776*K3**2 - 970*K4**2 - 84*K5**2 - 4*K6**2 + 5896 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1494'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3668', 'vk6.3763', 'vk6.3958', 'vk6.4053', 'vk6.4490', 'vk6.4585', 'vk6.5872', 'vk6.5999', 'vk6.7151', 'vk6.7330', 'vk6.7421', 'vk6.7929', 'vk6.8048', 'vk6.9359', 'vk6.17913', 'vk6.18008', 'vk6.18750', 'vk6.24452', 'vk6.24869', 'vk6.25332', 'vk6.37497', 'vk6.43879', 'vk6.44224', 'vk6.44529', 'vk6.48292', 'vk6.48355', 'vk6.50073', 'vk6.50187', 'vk6.50590', 'vk6.50653', 'vk6.55856', 'vk6.60708'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U3U5O6O5U4U6U2 |
R3 orbit | {'O1O2O3U1O4U3U5O6O5U4U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4U5O6O4U6U1O5U3 |
Gauss code of K* | O1O2O3U4U3U5O4U1O5O6U2U6 |
Gauss code of -K* | O1O2O3U4U2O4O5U3O6U5U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 0 0 1 0],[ 2 0 2 1 1 2 0],[-1 -2 0 -1 0 0 0],[ 0 -1 1 0 1 0 1],[ 0 -1 0 -1 0 0 0],[-1 -2 0 0 0 0 0],[ 0 0 0 -1 0 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 0 -2],[-1 0 0 0 0 0 -2],[-1 0 0 0 0 -1 -2],[ 0 0 0 0 0 -1 0],[ 0 0 0 0 0 -1 -1],[ 0 0 1 1 1 0 -1],[ 2 2 2 0 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,0,2,0,0,0,0,2,0,0,1,2,0,1,0,1,1,1] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,1,2,2,-1,0,0,0,1,0,1,0,0,0] |
Phi of -K | [-2,0,0,0,1,1,1,1,2,1,1,-1,-1,0,1,0,1,1,1,1,0] |
Phi of K* | [-1,-1,0,0,0,2,0,0,1,1,1,1,1,1,1,1,1,1,0,1,2] |
Phi of -K* | [-2,0,0,0,1,1,0,1,1,2,2,-1,0,0,0,1,0,1,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+13t^4+18t^2 |
Outer characteristic polynomial | t^7+19t^5+35t^3+3t |
Flat arrow polynomial | -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial | -512*K1**6 - 192*K1**4*K2**2 + 2080*K1**4*K2 - 6704*K1**4 + 896*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1984*K1**3*K3 + 128*K1**2*K2**2*K4 - 4608*K1**2*K2**2 - 896*K1**2*K2*K4 + 12384*K1**2*K2 - 1424*K1**2*K3**2 - 256*K1**2*K4**2 - 6172*K1**2 - 448*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 8096*K1*K2*K3 + 2328*K1*K3*K4 + 272*K1*K4*K5 - 104*K2**4 - 80*K2**2*K3**2 - 48*K2**2*K4**2 + 864*K2**2*K4 - 5668*K2**2 + 144*K2*K3*K5 + 32*K2*K4*K6 - 2776*K3**2 - 970*K4**2 - 84*K5**2 - 4*K6**2 + 5896 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]] |
If K is slice | False |