Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1493

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,1,2,-1,1,1,0,1,1,1,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1493']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+23t^5+46t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1493']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 352*K1**4*K2 - 528*K1**4 + 256*K1**2*K2**3 - 1008*K1**2*K2**2 + 1136*K1**2*K2 - 48*K1**2*K3**2 - 672*K1**2 + 64*K1*K2**3*K3 + 736*K1*K2*K3 + 136*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 280*K2**4 - 112*K2**2*K3**2 - 48*K2**2*K4**2 + 192*K2**2*K4 - 454*K2**2 + 80*K2*K3*K5 + 16*K2*K4*K6 - 244*K3**2 - 118*K4**2 - 20*K5**2 - 2*K6**2 + 660
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1493']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11288', 'vk6.11366', 'vk6.12551', 'vk6.12662', 'vk6.13379', 'vk6.13456', 'vk6.13645', 'vk6.13759', 'vk6.14154', 'vk6.14385', 'vk6.15616', 'vk6.16080', 'vk6.16472', 'vk6.16487', 'vk6.17634', 'vk6.18691', 'vk6.22883', 'vk6.22914', 'vk6.24793', 'vk6.25252', 'vk6.30973', 'vk6.31099', 'vk6.32152', 'vk6.32271', 'vk6.33134', 'vk6.33181', 'vk6.33243', 'vk6.33292', 'vk6.34864', 'vk6.34895', 'vk6.36983', 'vk6.37437', 'vk6.39605', 'vk6.41846', 'vk6.42446', 'vk6.44165', 'vk6.46221', 'vk6.47828', 'vk6.52060', 'vk6.52499', 'vk6.52897', 'vk6.53373', 'vk6.53555', 'vk6.53596', 'vk6.53627', 'vk6.53687', 'vk6.56351', 'vk6.60985']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3U5O6O5U4U2U6
R3 orbit {'O1O2O3U1O4U3U5O6O5U4U2U6', 'O1O2O3U1U2U4O5O4O6U3U6U5', 'O1O2O3U1U2O4U5O6O5U3U4U6'}
R3 orbit length 3
Gauss code of -K O1O2O3U4U2U5O6O4U6U1O5U3
Gauss code of K* O1O2O3U4U2U5O4U1O5O6U3U6
Gauss code of -K* O1O2O3U4U1O4O5U3O6U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 0 1 1],[ 2 0 2 1 1 2 1],[ 0 -2 0 -1 1 0 1],[ 0 -1 1 0 1 0 1],[ 0 -1 -1 -1 0 0 0],[-1 -2 0 0 0 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 0 0 0 -2],[-1 -1 0 0 -1 -1 -1],[ 0 0 0 0 -1 -1 -1],[ 0 0 1 1 0 1 -1],[ 0 0 1 1 -1 0 -2],[ 2 2 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,0,0,0,2,0,1,1,1,1,1,1,-1,1,2]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,1,2,-1,1,1,0,1,1,1,1,0,-1]
Phi of -K [-2,0,0,0,1,1,0,1,1,1,2,-1,1,1,0,1,1,1,1,0,-1]
Phi of K* [-1,-1,0,0,0,2,-1,0,0,1,2,1,1,1,1,-1,1,0,1,1,1]
Phi of -K* [-2,0,0,0,1,1,1,1,2,1,2,-1,-1,0,0,1,1,0,1,0,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial -2w^3z+9w^2z+15w
Inner characteristic polynomial t^6+17t^4+17t^2
Outer characteristic polynomial t^7+23t^5+46t^3
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -128*K1**4*K2**2 + 352*K1**4*K2 - 528*K1**4 + 256*K1**2*K2**3 - 1008*K1**2*K2**2 + 1136*K1**2*K2 - 48*K1**2*K3**2 - 672*K1**2 + 64*K1*K2**3*K3 + 736*K1*K2*K3 + 136*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 280*K2**4 - 112*K2**2*K3**2 - 48*K2**2*K4**2 + 192*K2**2*K4 - 454*K2**2 + 80*K2*K3*K5 + 16*K2*K4*K6 - 244*K3**2 - 118*K4**2 - 20*K5**2 - 2*K6**2 + 660
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice False
Contact