Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,3,3,-1,1,1,1,2,-1,0,-1,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1482'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+32t^5+64t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1482'] |
2-strand cable arrow polynomial of the knot is: 1216*K1**2*K2**3 - 3808*K1**2*K2**2 - 128*K1**2*K2*K4 + 3800*K1**2*K2 - 2848*K1**2 - 1056*K1*K2**2*K3 + 3496*K1*K2*K3 + 200*K1*K3*K4 - 1176*K2**4 + 1024*K2**2*K4 - 1608*K2**2 - 872*K3**2 - 174*K4**2 + 1932 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1482'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17023', 'vk6.17266', 'vk6.20566', 'vk6.21973', 'vk6.23446', 'vk6.23745', 'vk6.28029', 'vk6.29489', 'vk6.35522', 'vk6.35970', 'vk6.39437', 'vk6.41637', 'vk6.42938', 'vk6.43233', 'vk6.46023', 'vk6.47691', 'vk6.55205', 'vk6.55441', 'vk6.57437', 'vk6.58607', 'vk6.59600', 'vk6.59921', 'vk6.62109', 'vk6.63081', 'vk6.65010', 'vk6.65216', 'vk6.66973', 'vk6.67837', 'vk6.68285', 'vk6.68438', 'vk6.69590', 'vk6.70283'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U2U3O5O6U4U6U5 |
R3 orbit | {'O1O2O3U1O4U2U3O5O6U4U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5U6O5O4U1U2O6U3 |
Gauss code of K* | O1O2O3U4U5U6O4U1O5O6U3U2 |
Gauss code of -K* | O1O2O3U2U1O4O5U3O6U4U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 2 0 0],[ 1 -1 0 1 2 1 1],[-1 -2 -1 0 1 1 1],[ 0 -2 -2 -1 0 2 1],[-1 0 -1 -1 -2 0 0],[-1 0 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 1 -1 -2],[-1 -1 0 0 -1 -1 0],[-1 -1 0 0 -2 -1 0],[ 0 -1 1 2 0 -2 -2],[ 1 1 1 1 2 0 -1],[ 2 2 0 0 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,-1,-1,1,2,0,1,1,0,2,1,0,2,2,1] |
Phi over symmetry | [-2,-1,0,1,1,1,0,0,1,3,3,-1,1,1,1,2,-1,0,-1,-1,0] |
Phi of -K | [-2,-1,0,1,1,1,0,0,1,3,3,-1,1,1,1,2,-1,0,-1,-1,0] |
Phi of K* | [-1,-1,-1,0,1,2,-1,0,-1,1,3,1,2,1,1,0,1,3,-1,0,0] |
Phi of -K* | [-2,-1,0,1,1,1,1,2,0,0,2,2,1,1,1,1,2,-1,0,-1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 6z^2+19z+15 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w |
Inner characteristic polynomial | t^6+24t^4+11t^2+1 |
Outer characteristic polynomial | t^7+32t^5+64t^3+8t |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | 1216*K1**2*K2**3 - 3808*K1**2*K2**2 - 128*K1**2*K2*K4 + 3800*K1**2*K2 - 2848*K1**2 - 1056*K1*K2**2*K3 + 3496*K1*K2*K3 + 200*K1*K3*K4 - 1176*K2**4 + 1024*K2**2*K4 - 1608*K2**2 - 872*K3**2 - 174*K4**2 + 1932 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice | False |