Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.148

Min(phi) over symmetries of the knot is: [-4,-3,1,1,2,3,0,2,3,2,4,2,3,1,3,0,0,0,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.148']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - 2*K1*K3 - K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.71', '6.148', '6.170', '6.253', '6.259', '6.298', '6.439', '6.453', '6.499', '6.503']
Outer characteristic polynomial of the knot is: t^7+120t^5+155t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.148']
2-strand cable arrow polynomial of the knot is: -128*K1**3*K3 + 128*K1**2*K2**3 + 96*K1**2*K2**2*K4 - 2016*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 3304*K1**2*K2 - 160*K1**2*K3**2 - 64*K1**2*K4**2 - 3876*K1**2 + 320*K1*K2**3*K3 - 768*K1*K2**2*K3 - 416*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 4744*K1*K2*K3 + 824*K1*K3*K4 + 328*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 160*K2**4*K4 - 2096*K2**4 + 32*K2**3*K3*K5 - 64*K2**3*K6 - 496*K2**2*K3**2 - 144*K2**2*K4**2 + 2792*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 3386*K2**2 + 1072*K2*K3*K5 + 136*K2*K4*K6 + 56*K2*K5*K7 + 8*K2*K6*K8 + 16*K3**2*K6 - 2104*K3**2 - 1090*K4**2 - 460*K5**2 - 54*K6**2 - 8*K7**2 - 2*K8**2 + 3778
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.148']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73326', 'vk6.73466', 'vk6.74023', 'vk6.74575', 'vk6.75220', 'vk6.75474', 'vk6.76051', 'vk6.76773', 'vk6.78211', 'vk6.78438', 'vk6.79002', 'vk6.79567', 'vk6.80024', 'vk6.80174', 'vk6.80532', 'vk6.80992', 'vk6.81888', 'vk6.82354', 'vk6.82376', 'vk6.82602', 'vk6.83623', 'vk6.83667', 'vk6.84303', 'vk6.84373', 'vk6.84483', 'vk6.84584', 'vk6.84634', 'vk6.85225', 'vk6.85596', 'vk6.86757', 'vk6.88703', 'vk6.88984']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1O6U2U5U4U6U3
R3 orbit {'O1O2O3O4O5U1O6U2U5U4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U6U2U1U4O6U5
Gauss code of K* O1O2O3O4O5U6U1U5U3U2O6U4
Gauss code of -K* O1O2O3O4O5U2O6U4U3U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -3 2 1 1 3],[ 4 0 1 4 3 2 3],[ 3 -1 0 4 2 1 3],[-2 -4 -4 0 -1 -1 2],[-1 -3 -2 1 0 0 2],[-1 -2 -1 1 0 0 1],[-3 -3 -3 -2 -2 -1 0]]
Primitive based matrix [[ 0 3 2 1 1 -3 -4],[-3 0 -2 -1 -2 -3 -3],[-2 2 0 -1 -1 -4 -4],[-1 1 1 0 0 -1 -2],[-1 2 1 0 0 -2 -3],[ 3 3 4 1 2 0 -1],[ 4 3 4 2 3 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,-1,3,4,2,1,2,3,3,1,1,4,4,0,1,2,2,3,1]
Phi over symmetry [-4,-3,1,1,2,3,0,2,3,2,4,2,3,1,3,0,0,0,0,1,-1]
Phi of -K [-4,-3,1,1,2,3,0,2,3,2,4,2,3,1,3,0,0,0,0,1,-1]
Phi of K* [-3,-2,-1,-1,3,4,-1,0,1,3,4,0,0,1,2,0,2,2,3,3,0]
Phi of -K* [-4,-3,1,1,2,3,1,2,3,4,3,1,2,4,3,0,1,1,1,2,2]
Symmetry type of based matrix c
u-polynomial t^4-t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -2w^4z^2+6w^3z^2-8w^3z+25w^2z+19w
Inner characteristic polynomial t^6+80t^4+44t^2+1
Outer characteristic polynomial t^7+120t^5+155t^3+16t
Flat arrow polynomial 4*K1**3 - 4*K1*K2 - 2*K1*K3 - K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial -128*K1**3*K3 + 128*K1**2*K2**3 + 96*K1**2*K2**2*K4 - 2016*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 3304*K1**2*K2 - 160*K1**2*K3**2 - 64*K1**2*K4**2 - 3876*K1**2 + 320*K1*K2**3*K3 - 768*K1*K2**2*K3 - 416*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 4744*K1*K2*K3 + 824*K1*K3*K4 + 328*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 160*K2**4*K4 - 2096*K2**4 + 32*K2**3*K3*K5 - 64*K2**3*K6 - 496*K2**2*K3**2 - 144*K2**2*K4**2 + 2792*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 3386*K2**2 + 1072*K2*K3*K5 + 136*K2*K4*K6 + 56*K2*K5*K7 + 8*K2*K6*K8 + 16*K3**2*K6 - 2104*K3**2 - 1090*K4**2 - 460*K5**2 - 54*K6**2 - 8*K7**2 - 2*K8**2 + 3778
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact