Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1473

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,0,1,-1,0,1,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1473']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+29t^5+65t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1473']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 1632*K1**4*K2 - 6416*K1**4 + 96*K1**3*K2*K3 - 704*K1**3*K3 + 256*K1**2*K2**3 - 6032*K1**2*K2**2 - 160*K1**2*K2*K4 + 12400*K1**2*K2 - 48*K1**2*K3**2 - 5052*K1**2 - 352*K1*K2**2*K3 + 5680*K1*K2*K3 + 176*K1*K3*K4 - 416*K2**4 + 488*K2**2*K4 - 4640*K2**2 - 1348*K3**2 - 132*K4**2 + 4698
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1473']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3667', 'vk6.3764', 'vk6.3957', 'vk6.4054', 'vk6.4474', 'vk6.4569', 'vk6.5856', 'vk6.5983', 'vk6.7152', 'vk6.7329', 'vk6.7422', 'vk6.7913', 'vk6.8032', 'vk6.9343', 'vk6.17905', 'vk6.18000', 'vk6.18766', 'vk6.24444', 'vk6.24885', 'vk6.25348', 'vk6.37513', 'vk6.43871', 'vk6.44240', 'vk6.44545', 'vk6.48291', 'vk6.48356', 'vk6.50074', 'vk6.50188', 'vk6.50574', 'vk6.50637', 'vk6.55864', 'vk6.60724']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U3O5U6U5U1O6U4
R3 orbit {'O1O2O3U2O4U3O5U6U5U1O6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3U4O5U3U6U5O6U1O4U2
Gauss code of K* O1O2O3U1O4U3U5U6O5U4O6U2
Gauss code of -K* O1O2O3U2O4U5O6U4U6U1O5U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 -1 0 2 1 -2],[ 0 0 -1 1 1 0 -1],[ 1 1 0 1 1 0 1],[ 0 -1 -1 0 1 0 0],[-2 -1 -1 -1 0 1 -3],[-1 0 0 0 -1 0 -1],[ 2 1 -1 0 3 1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 1 -1 -1 -1 -3],[-1 -1 0 0 0 0 -1],[ 0 1 0 0 1 -1 -1],[ 0 1 0 -1 0 -1 0],[ 1 1 0 1 1 0 1],[ 2 3 1 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,-1,1,1,1,3,0,0,0,1,-1,1,1,1,0,-1]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,0,1,-1,0,1,0,1,-1]
Phi of -K [-2,-1,0,0,1,2,2,1,2,2,1,0,0,2,2,-1,1,1,1,1,2]
Phi of K* [-2,-1,0,0,1,2,2,1,1,2,1,1,1,2,2,-1,0,2,0,1,2]
Phi of -K* [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,0,1,-1,0,1,0,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 21z+43
Enhanced Jones-Krushkal polynomial 21w^2z+43w
Inner characteristic polynomial t^6+19t^4+37t^2+1
Outer characteristic polynomial t^7+29t^5+65t^3+8t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -128*K1**6 + 1632*K1**4*K2 - 6416*K1**4 + 96*K1**3*K2*K3 - 704*K1**3*K3 + 256*K1**2*K2**3 - 6032*K1**2*K2**2 - 160*K1**2*K2*K4 + 12400*K1**2*K2 - 48*K1**2*K3**2 - 5052*K1**2 - 352*K1*K2**2*K3 + 5680*K1*K2*K3 + 176*K1*K3*K4 - 416*K2**4 + 488*K2**2*K4 - 4640*K2**2 - 1348*K3**2 - 132*K4**2 + 4698
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact