Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1472

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,1,1,1,0,2,-1,0,1,0,1,1,0,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1472']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+19t^5+34t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1472']
2-strand cable arrow polynomial of the knot is: -256*K1**6 + 608*K1**4*K2 - 3248*K1**4 + 32*K1**3*K2*K3 - 992*K1**2*K2**2 + 4136*K1**2*K2 - 48*K1**2*K3**2 - 888*K1**2 + 888*K1*K2*K3 + 24*K1*K3*K4 - 24*K2**4 + 40*K2**2*K4 - 1432*K2**2 - 256*K3**2 - 18*K4**2 + 1432
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1472']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3642', 'vk6.3737', 'vk6.3928', 'vk6.4023', 'vk6.4478', 'vk6.4573', 'vk6.5860', 'vk6.5987', 'vk6.7133', 'vk6.7308', 'vk6.7399', 'vk6.7909', 'vk6.8028', 'vk6.9339', 'vk6.17926', 'vk6.18023', 'vk6.18765', 'vk6.24461', 'vk6.24886', 'vk6.25347', 'vk6.37512', 'vk6.43896', 'vk6.44241', 'vk6.44544', 'vk6.48282', 'vk6.48345', 'vk6.50071', 'vk6.50181', 'vk6.50570', 'vk6.50633', 'vk6.55871', 'vk6.60725']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U3O5U4U6U1O6U5
R3 orbit {'O1O2O3U2O4U3O5U4U6U1O6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4O5U3U5U6O4U1O6U2
Gauss code of K* O1O2O3U2O4U3U5U6O5U1O6U4
Gauss code of -K* O1O2O3U4O5U3O6U5U6U1O4U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 -1 0 0 2 -1],[ 0 0 -1 0 1 1 0],[ 1 1 0 1 1 0 1],[ 0 0 -1 0 1 1 0],[ 0 -1 -1 -1 0 1 0],[-2 -1 0 -1 -1 0 -2],[ 1 0 -1 0 0 2 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 -1 -1 -1 0 -2],[ 0 1 0 1 0 -1 0],[ 0 1 -1 0 -1 -1 0],[ 0 1 0 1 0 -1 0],[ 1 0 1 1 1 0 1],[ 1 2 0 0 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,1,1,1,0,2,-1,0,1,0,1,1,0,1,0,-1]
Phi over symmetry [-2,0,0,0,1,1,1,1,1,0,2,-1,0,1,0,1,1,0,1,0,-1]
Phi of -K [-1,-1,0,0,0,2,-1,0,0,0,3,1,1,1,1,-1,0,1,1,1,1]
Phi of K* [-2,0,0,0,1,1,1,1,1,1,3,-1,-1,1,0,0,1,0,1,0,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,0,0,2,1,1,1,0,-1,-1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 15z+31
Enhanced Jones-Krushkal polynomial 15w^2z+31w
Inner characteristic polynomial t^6+13t^4+13t^2
Outer characteristic polynomial t^7+19t^5+34t^3
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -256*K1**6 + 608*K1**4*K2 - 3248*K1**4 + 32*K1**3*K2*K3 - 992*K1**2*K2**2 + 4136*K1**2*K2 - 48*K1**2*K3**2 - 888*K1**2 + 888*K1*K2*K3 + 24*K1*K3*K4 - 24*K2**4 + 40*K2**2*K4 - 1432*K2**2 - 256*K3**2 - 18*K4**2 + 1432
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}]]
If K is slice False
Contact