Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1470

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,1,1,3,3,0,0,2,1,1,0,1,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1470']
Arrow polynomial of the knot is: -14*K1**2 + 7*K2 + 8
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1470', '6.1607']
Outer characteristic polynomial of the knot is: t^7+45t^5+61t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1470']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 128*K1**4*K2**2 + 2368*K1**4*K2 - 6112*K1**4 + 288*K1**3*K2*K3 - 1632*K1**3*K3 + 384*K1**2*K2**3 - 6288*K1**2*K2**2 - 288*K1**2*K2*K4 + 13264*K1**2*K2 - 576*K1**2*K3**2 - 6772*K1**2 - 1024*K1*K2**2*K3 + 8096*K1*K2*K3 + 1016*K1*K3*K4 - 536*K2**4 + 952*K2**2*K4 - 5760*K2**2 - 2340*K3**2 - 454*K4**2 + 5796
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1470']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4770', 'vk6.4796', 'vk6.5105', 'vk6.5131', 'vk6.6336', 'vk6.6763', 'vk6.6793', 'vk6.8297', 'vk6.8315', 'vk6.8748', 'vk6.9667', 'vk6.9689', 'vk6.9976', 'vk6.9998', 'vk6.21008', 'vk6.21027', 'vk6.22430', 'vk6.22451', 'vk6.28460', 'vk6.40228', 'vk6.40255', 'vk6.42157', 'vk6.46726', 'vk6.46753', 'vk6.48809', 'vk6.49025', 'vk6.49035', 'vk6.49841', 'vk6.49855', 'vk6.51507', 'vk6.58969', 'vk6.69801']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5O6U4U6U3O5U2
R3 orbit {'O1O2O3U1O4U5O6U4U6U3O5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2O4U1U5U6O5U4O6U3
Gauss code of K* O1O2O3U4O5U6U5U3O6U1O4U2
Gauss code of -K* O1O2O3U2O4U3O5U1U6U5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 2 0 -2 1],[ 2 0 2 1 0 1 0],[-1 -2 0 1 0 -3 1],[-2 -1 -1 0 -1 -3 1],[ 0 0 0 1 0 -1 1],[ 2 -1 3 3 1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 1 -1 -1 -1 -3],[-1 -1 0 -1 -1 0 -1],[-1 1 1 0 0 -2 -3],[ 0 1 1 0 0 0 -1],[ 2 1 0 2 0 0 1],[ 2 3 1 3 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,-1,1,1,1,3,1,1,0,1,0,2,3,0,1,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,1,1,3,3,0,0,2,1,1,0,1,-1,-1,1]
Phi of -K [-2,-2,0,1,1,2,-1,2,1,3,3,1,0,2,1,1,0,1,-1,0,2]
Phi of K* [-2,-1,-1,0,2,2,0,2,1,1,3,1,1,0,1,0,2,3,1,2,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,1,1,3,3,0,0,2,1,1,0,1,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 21z+43
Enhanced Jones-Krushkal polynomial 21w^2z+43w
Inner characteristic polynomial t^6+31t^4+34t^2
Outer characteristic polynomial t^7+45t^5+61t^3+7t
Flat arrow polynomial -14*K1**2 + 7*K2 + 8
2-strand cable arrow polynomial -256*K1**6 - 128*K1**4*K2**2 + 2368*K1**4*K2 - 6112*K1**4 + 288*K1**3*K2*K3 - 1632*K1**3*K3 + 384*K1**2*K2**3 - 6288*K1**2*K2**2 - 288*K1**2*K2*K4 + 13264*K1**2*K2 - 576*K1**2*K3**2 - 6772*K1**2 - 1024*K1*K2**2*K3 + 8096*K1*K2*K3 + 1016*K1*K3*K4 - 536*K2**4 + 952*K2**2*K4 - 5760*K2**2 - 2340*K3**2 - 454*K4**2 + 5796
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact