Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1462

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,1,2,-1,-1,1,0,-1,1,1,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1462']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+21t^5+61t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1462']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 160*K1**4*K2 - 944*K1**4 + 160*K1**3*K2*K3 - 864*K1**2*K2**2 + 1576*K1**2*K2 - 272*K1**2*K3**2 - 912*K1**2 + 1448*K1*K2*K3 + 296*K1*K3*K4 - 24*K2**4 + 72*K2**2*K4 - 952*K2**2 - 584*K3**2 - 126*K4**2 + 1028
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1462']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16514', 'vk6.16605', 'vk6.18089', 'vk6.18425', 'vk6.22941', 'vk6.23036', 'vk6.23499', 'vk6.23836', 'vk6.24540', 'vk6.24957', 'vk6.35021', 'vk6.35644', 'vk6.36671', 'vk6.37093', 'vk6.39448', 'vk6.41647', 'vk6.42479', 'vk6.42590', 'vk6.43951', 'vk6.44266', 'vk6.46036', 'vk6.47702', 'vk6.54757', 'vk6.54852', 'vk6.56189', 'vk6.57446', 'vk6.59217', 'vk6.59280', 'vk6.59665', 'vk6.60011', 'vk6.60788', 'vk6.62121', 'vk6.64826', 'vk6.65061', 'vk6.65539', 'vk6.65849', 'vk6.68061', 'vk6.68124', 'vk6.68621', 'vk6.68834']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3O6U5U2O4U1U6
R3 orbit {'O1O2O3U4O5U3O6U5U2O4U1U6', 'O1O2O3U4U2O5O6U3U5O4U1U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U3O5U2U6O4U1O6U5
Gauss code of K* O1O2U3O4O5U4U2U6O3U1O6U5
Gauss code of -K* O1O2U3O4O5U1O6U5O3U6U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 -1 0 2],[ 1 0 1 0 -1 1 2],[ 0 -1 0 -1 -1 1 1],[ 0 0 1 0 -1 1 0],[ 1 1 1 1 0 0 1],[ 0 -1 -1 -1 0 0 1],[-2 -2 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -1 -1 -2],[ 0 0 0 1 1 -1 0],[ 0 1 -1 0 1 -1 -1],[ 0 1 -1 -1 0 0 -1],[ 1 1 1 1 0 0 1],[ 1 2 0 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,1,1,2,-1,-1,1,0,-1,1,1,0,1,-1]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,1,2,-1,-1,1,0,-1,1,1,0,1,-1]
Phi of -K [-1,-1,0,0,0,2,-1,0,0,1,2,0,1,0,1,1,-1,1,-1,2,1]
Phi of K* [-2,0,0,0,1,1,1,1,2,1,2,-1,-1,0,1,-1,0,0,1,0,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,1,1,2,1,0,1,1,1,1,0,-1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 11z+23
Enhanced Jones-Krushkal polynomial 11w^2z+23w
Inner characteristic polynomial t^6+15t^4+32t^2
Outer characteristic polynomial t^7+21t^5+61t^3
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 160*K1**4*K2 - 944*K1**4 + 160*K1**3*K2*K3 - 864*K1**2*K2**2 + 1576*K1**2*K2 - 272*K1**2*K3**2 - 912*K1**2 + 1448*K1*K2*K3 + 296*K1*K3*K4 - 24*K2**4 + 72*K2**2*K4 - 952*K2**2 - 584*K3**2 - 126*K4**2 + 1028
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact