Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1446

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,2,1,2,2,1,0,1,2,1,1,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1446']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+30t^5+57t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1446']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 128*K1**4*K2**2 + 2400*K1**4*K2 - 6016*K1**4 + 448*K1**3*K2*K3 - 992*K1**3*K3 + 448*K1**2*K2**3 - 5680*K1**2*K2**2 - 352*K1**2*K2*K4 + 10152*K1**2*K2 - 384*K1**2*K3**2 - 3696*K1**2 - 512*K1*K2**2*K3 + 5048*K1*K2*K3 + 464*K1*K3*K4 - 408*K2**4 + 520*K2**2*K4 - 3656*K2**2 - 1136*K3**2 - 182*K4**2 + 3724
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1446']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13865', 'vk6.13962', 'vk6.14137', 'vk6.14360', 'vk6.14936', 'vk6.15061', 'vk6.15593', 'vk6.16063', 'vk6.16287', 'vk6.16312', 'vk6.17431', 'vk6.22602', 'vk6.22635', 'vk6.23943', 'vk6.33684', 'vk6.33765', 'vk6.34144', 'vk6.34251', 'vk6.34584', 'vk6.36206', 'vk6.36235', 'vk6.42280', 'vk6.53855', 'vk6.53900', 'vk6.54110', 'vk6.54396', 'vk6.54574', 'vk6.55586', 'vk6.59025', 'vk6.59046', 'vk6.60077', 'vk6.64566']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2O4U6U3O6U1U5
R3 orbit {'O1O2O3U4O5U2O4U6U3O6U1U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U3O5U1U5O6U2O4U6
Gauss code of K* O1O2U1O3O4U3U5U2O6U4O5U6
Gauss code of -K* O1O2U3O4O3U5O6U1O5U4U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 2 -1],[ 1 0 0 2 0 2 0],[ 1 0 0 0 1 1 0],[-1 -2 0 0 -1 -1 -1],[ 0 0 -1 1 0 2 -1],[-2 -2 -1 1 -2 0 -2],[ 1 0 0 1 1 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 1 -2 -1 -2 -2],[-1 -1 0 -1 0 -1 -2],[ 0 2 1 0 -1 -1 0],[ 1 1 0 1 0 0 0],[ 1 2 1 1 0 0 0],[ 1 2 2 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,-1,2,1,2,2,1,0,1,2,1,1,0,0,0,0]
Phi over symmetry [-2,-1,0,1,1,1,-1,2,1,2,2,1,0,1,2,1,1,0,0,0,0]
Phi of -K [-1,-1,-1,0,1,2,0,0,0,1,1,0,0,2,2,1,0,1,0,0,2]
Phi of K* [-2,-1,0,1,1,1,2,0,1,1,2,0,0,1,2,1,0,0,0,0,0]
Phi of -K* [-1,-1,-1,0,1,2,0,0,0,2,2,0,1,0,1,1,1,2,1,2,-1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+22t^4+32t^2
Outer characteristic polynomial t^7+30t^5+57t^3+4t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**6 - 128*K1**4*K2**2 + 2400*K1**4*K2 - 6016*K1**4 + 448*K1**3*K2*K3 - 992*K1**3*K3 + 448*K1**2*K2**3 - 5680*K1**2*K2**2 - 352*K1**2*K2*K4 + 10152*K1**2*K2 - 384*K1**2*K3**2 - 3696*K1**2 - 512*K1*K2**2*K3 + 5048*K1*K2*K3 + 464*K1*K3*K4 - 408*K2**4 + 520*K2**2*K4 - 3656*K2**2 - 1136*K3**2 - 182*K4**2 + 3724
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{6}, {2, 5}, {3, 4}, {1}]]
If K is slice False
Contact