Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,3,0,1,0,0,1,1,0,1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1422'] |
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
Outer characteristic polynomial of the knot is: t^7+19t^5+34t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1422'] |
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 288*K1**4*K2 - 4304*K1**4 + 160*K1**3*K2*K3 - 416*K1**3*K3 - 2368*K1**2*K2**2 - 192*K1**2*K2*K4 + 8600*K1**2*K2 - 368*K1**2*K3**2 - 4352*K1**2 - 32*K1*K2**2*K3 + 3768*K1*K2*K3 + 520*K1*K3*K4 - 56*K2**4 + 184*K2**2*K4 - 3728*K2**2 - 1240*K3**2 - 206*K4**2 + 3804 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1422'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3557', 'vk6.3578', 'vk6.3592', 'vk6.3799', 'vk6.3817', 'vk6.3832', 'vk6.3850', 'vk6.6973', 'vk6.6987', 'vk6.7006', 'vk6.7020', 'vk6.7191', 'vk6.7209', 'vk6.7224', 'vk6.15330', 'vk6.15350', 'vk6.15457', 'vk6.15477', 'vk6.33971', 'vk6.34017', 'vk6.34029', 'vk6.34432', 'vk6.48218', 'vk6.48232', 'vk6.48375', 'vk6.49958', 'vk6.49980', 'vk6.49994', 'vk6.53991', 'vk6.54011', 'vk6.54047', 'vk6.54495'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U3O5U4U5O6U2U6 |
R3 orbit | {'O1O2O3U1O4U3O5U4U5O6U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U2O4U5U6O5U1O6U3 |
Gauss code of K* | O1O2U3O4O3U5U4U6O5U1O6U2 |
Gauss code of -K* | O1O2U1O3O4U3O5U4O6U5U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 0 0 1 1],[ 2 0 2 1 1 0 1],[ 0 -2 0 -1 0 1 1],[ 0 -1 1 0 1 1 0],[ 0 -1 0 -1 0 1 0],[-1 0 -1 -1 -1 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 0 -2],[-1 0 0 0 0 -1 -1],[-1 0 0 -1 -1 -1 0],[ 0 0 1 0 1 1 -1],[ 0 0 1 -1 0 0 -1],[ 0 1 1 -1 0 0 -2],[ 2 1 0 1 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,0,2,0,0,0,1,1,1,1,1,0,-1,-1,1,0,1,2] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,1,2,3,0,1,0,0,1,1,0,1,0,0] |
Phi of -K | [-2,0,0,0,1,1,0,1,1,2,3,0,1,0,0,1,1,0,1,0,0] |
Phi of K* | [-1,-1,0,0,0,2,0,0,0,0,3,0,1,1,2,-1,0,0,1,1,1] |
Phi of -K* | [-2,0,0,0,1,1,1,1,2,0,1,-1,0,1,0,1,1,0,1,1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 19z+39 |
Enhanced Jones-Krushkal polynomial | 19w^2z+39w |
Inner characteristic polynomial | t^6+13t^4+15t^2 |
Outer characteristic polynomial | t^7+19t^5+34t^3+5t |
Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
2-strand cable arrow polynomial | -64*K1**4*K2**2 + 288*K1**4*K2 - 4304*K1**4 + 160*K1**3*K2*K3 - 416*K1**3*K3 - 2368*K1**2*K2**2 - 192*K1**2*K2*K4 + 8600*K1**2*K2 - 368*K1**2*K3**2 - 4352*K1**2 - 32*K1*K2**2*K3 + 3768*K1*K2*K3 + 520*K1*K3*K4 - 56*K2**4 + 184*K2**2*K4 - 3728*K2**2 - 1240*K3**2 - 206*K4**2 + 3804 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |