Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1421

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,3,-1,1,-1,0,1,0,0,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1421']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+25t^5+37t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1421']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 160*K1**4*K2 - 496*K1**4 + 96*K1**3*K2*K3 - 512*K1**2*K2**2 + 872*K1**2*K2 - 48*K1**2*K3**2 - 368*K1**2 + 488*K1*K2*K3 + 8*K1*K3*K4 - 24*K2**4 + 40*K2**2*K4 - 400*K2**2 - 136*K3**2 - 14*K4**2 + 396
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1421']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4673', 'vk6.4964', 'vk6.6141', 'vk6.6626', 'vk6.8146', 'vk6.8550', 'vk6.9524', 'vk6.9879', 'vk6.17668', 'vk6.17717', 'vk6.22142', 'vk6.24235', 'vk6.24803', 'vk6.25262', 'vk6.28235', 'vk6.29660', 'vk6.29907', 'vk6.29942', 'vk6.30007', 'vk6.30068', 'vk6.30957', 'vk6.31082', 'vk6.32137', 'vk6.32258', 'vk6.36989', 'vk6.39695', 'vk6.41936', 'vk6.43604', 'vk6.46267', 'vk6.47874', 'vk6.48713', 'vk6.48924', 'vk6.49491', 'vk6.49704', 'vk6.51692', 'vk6.51719', 'vk6.52041', 'vk6.52127', 'vk6.55710', 'vk6.58787', 'vk6.60284', 'vk6.60664', 'vk6.61011', 'vk6.63246', 'vk6.63352', 'vk6.63398', 'vk6.65803', 'vk6.68556']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3O5U4U2O6U5U6
R3 orbit {'O1O2O3U1O4U3O5U4U2O6U5U6', 'O1O2O3U1U2O4O5U3O6U5U6U4', 'O1O2O3U1U2O4O5U3U4O6U5U6'}
R3 orbit length 3
Gauss code of -K O1O2O3U4U5O4U2U6O5U1O6U3
Gauss code of K* O1O2U3O4O3U5U2U6O5U1O6U4
Gauss code of -K* O1O2U1O3O4U2O5U4O6U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 0 1 1],[ 2 0 2 1 1 1 0],[ 0 -2 0 -1 1 2 1],[ 0 -1 1 0 1 1 0],[ 0 -1 -1 -1 0 1 1],[-1 -1 -2 -1 -1 0 1],[-1 0 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 -1 -1 -2 -1],[-1 -1 0 0 -1 -1 0],[ 0 1 0 0 1 1 -1],[ 0 1 1 -1 0 -1 -1],[ 0 2 1 -1 1 0 -2],[ 2 1 0 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,1,1,2,1,0,1,1,0,-1,-1,1,1,1,2]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,2,3,-1,1,-1,0,1,0,0,0,1,-1]
Phi of -K [-2,0,0,0,1,1,0,1,1,2,3,-1,1,-1,0,1,0,0,0,1,-1]
Phi of K* [-1,-1,0,0,0,2,-1,0,0,1,3,-1,0,0,2,1,-1,0,-1,1,1]
Phi of -K* [-2,0,0,0,1,1,1,1,2,0,1,-1,-1,1,1,1,0,1,1,2,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial 7w^2z+15w
Inner characteristic polynomial t^6+19t^4+8t^2
Outer characteristic polynomial t^7+25t^5+37t^3
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 160*K1**4*K2 - 496*K1**4 + 96*K1**3*K2*K3 - 512*K1**2*K2**2 + 872*K1**2*K2 - 48*K1**2*K3**2 - 368*K1**2 + 488*K1*K2*K3 + 8*K1*K3*K4 - 24*K2**4 + 40*K2**2*K4 - 400*K2**2 - 136*K3**2 - 14*K4**2 + 396
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact